钠电池负极材料:传统石墨负极储钠能力差硬碳-软碳是相对更理想的钠电负极材料分析研究_第1页
钠电池负极材料:传统石墨负极储钠能力差硬碳-软碳是相对更理想的钠电负极材料分析研究_第2页
钠电池负极材料:传统石墨负极储钠能力差硬碳-软碳是相对更理想的钠电负极材料分析研究_第3页
钠电池负极材料:传统石墨负极储钠能力差硬碳-软碳是相对更理想的钠电负极材料分析研究_第4页
钠电池负极材料:传统石墨负极储钠能力差硬碳-软碳是相对更理想的钠电负极材料分析研究_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

钠电池负极材料:传统石墨负极储钠能力差,硬碳/软碳是相对更理想的钠电负极材料

十三五期间,科技部通过国家重点研发计划智能电网技术与装备重点专项,对电池储能相关技术进行了系统部署。其中,钠基储能电池技术作为重点支持方向之一,在高安全长寿命和低成本钠基储能电池的基础科学问题研究等项目系列成果推动下进步显著。由于钠离子电池的结构和工作原理基本与锂离子电池相同,因此,钠离子电池可以借鉴锂离子电池的产业化经验,极大的简化钠离子电池的生产工序。但是由于钠离子半径要比锂离子大70%,导致钠离子电池能量密度不足,为此,相关企业纷纷加大研发投入力度,钠离子电池应用的关键问题被逐渐攻克,前期制约钠离子电池产业化的正负极材料均已实现技术突破,层状氧化物正极+碳基负极+有机电解液体系的钠离子电池即将迈入到商业化阶段,有望实现规模化生产。同时,钠离子电池的原材料成本相对于锂离子电池具有天然的优势,尤其是在碳酸锂价格处于高位的情况更为显著,锂离子电池成本居高不下将推动钠离子电池产业化进程的加速。钠电池负极材料:传统石墨负极储钠能力差,硬碳/软碳是相对更理想的钠电负极材料理想的钠离子电池负极材料应当尽量满足:1)工作电压低;2)比容量高;3)首周库仑效率高;4)压实密度高;5)电子和离子电导率高;6)结构稳定(体积形变小),空气稳定;7)成本低廉和安全无毒等特点。现有能够用于钠离子电池的负极材料主要包括:碳基材料、合金类材料、和金属基复合物材料,其中碳基材料由于具有导电性好、成本低廉、无毒环保,成为钠离子电池负极材料的首选。碳基材料主要包括石墨类材料、无定形碳材料(软硬碳)、纳米碳材料。其中,石墨负极在碳酸酯电解液中几乎不具备储钠能力,在醚类溶剂中虽能使溶剂化的钠离子共嵌到石墨层中,但其低的容量、高的电压以及电解液参与反应会降低实际电池的能量密度,因此石墨负极在钠离子电池中难以使用。于加快推动新型储能发展的指导意见(发改能源规〔2021〕1051号)2021年四月下旬,国家发展改革委、国家能源局发布了《关于加快推动新型储能发展的指导意见》,主要目标是到2025年实现新型储能从商业化初期向规模化发展转变。新型储能技术创新能力显著提高,核心技术装备自主可控水平大幅提升,在高安全、低成本、高可靠、长寿命等方面取得长足进步,标准体系基本完善,产业体系日趋完备,市场环境和商业模式基本成熟,装机规模达3000万千瓦以上。新型储能在推动能源领域碳达峰碳中和过程中发挥显著作用。到2030年,实现新型储能全面市场化发展。新型储能核心技术装备自主可控,技术创新和产业水平稳居全球前列,标准体系、市场机制、商业模式成熟健全,与电力系统各环节深度融合发展,装机规模基本满足新型电力系统相应需求。新型储能成为能源领域碳达峰碳中和的关键支撑之一。钠离子电池有望应用于储能和动力两个领域综合钠离子电池的电池容量性能、电池循环寿命和电池的安全性来看,未来钠离子电池有望应用于储能和动力两个领域。在动力领域,钠离子电池将在两轮车和电动汽车两个方面得到应用。在两轮车领域,由于钠离子电池有有能量密度相对较低、安全性比较高的特点,因此有望实现在对铅酸电池的逐步替代。其中电动汽车方面,有望通过宁德时代发布的钠离子电池与锂离子电池集成系统的形势得以应用。在储能领域,2021年07月15日,国家发展改革委、国家能源局发布了《关于加快推动新型储能发展的指导意见》提出加快飞轮储能、钠离子电池等技术开展规模化试验示范,以需求为导向,探索开展储氢、储热及其他创新储能技术的研究和示范应用。因此,在政策的推动下,钠离子电池有望加快应用于电网侧、用电侧和发电侧储能。企业重视产品和技术的研发投入,钠离子电池技术得到一定突破钠离子电池作为一种新的电池技术路线,吸引众多锂离子电池企业入场布局,其中布局钠离子电池技术的公司就有宁德时代、鹏辉能源等等。从企业营业收入来看,宁德时代营业收入在2017-2021年间呈现逐年上升的走势,其中2021年涨幅最大,主要是因为业务规模增长、产销量提升带动营业收入相应增长,而毛利率受部分原材料价格上涨的缘故,则处于不断下降的状态。鹏辉能源营业收入整体也处于不断增长的状态,但是增长幅度与宁德时代相比较低,其毛利率虽然整体处于下降趋势,但是在2019年有明显的上升趋势,这主要受公司ETC业务快速增长,带动了企业毛利率的增长。从研发投入来看,宁德时代的研发投入从2018年的19.91亿元增加到2021年的76.91亿元,其中2021年研发费用占总营业收入的比重达到了5.90%;鹏辉能源的研发投入整体处于小幅上升的状态,到2021年研发投入为2.46亿元,占总营业收入的比重达到了4.33%。由于两家公司高度重视产品和技术工艺的研发,随着锂电池行业发展受限,对于作为替代品的钠离子电池来说,将会受到企业的重视,大力推动该产品的发展。从钠离子电池研发情况来看,宁德时代为平衡资源、成本及碳足迹等潜在问题,开发钠离子电池,目前,已经发布了第一代钠离子电池,为了充分发挥钠离子电池的优势,迎合市场的需要,该企业加大了研发投入力度,促进钠离子电池产业链的建设,进一步提高能量密度及综合性能。鹏辉能源是基于钠成本和资源优势,研发高性能钠离子电池,目前,已经能实现小批量生产,未来将进一步提升钠离子电池的能量密度、循环寿命及低温性能,实现批量生产。国家政策的支持将快速推动钠离子电池的发展钠离子电池,是一种二次电池,主要依靠钠离子在正极和负极之间移动来工作,与锂离子电池工作原理相似。随着我国新能源汽车呈现持续高速增长趋势,对锂离子电池需求较大,然而我国锂资源十分有限,必然会出现锂盐供不应求的局面。为此,我国将大力发展在资源和成本上都更有优势的钠离子电池,通过颁布多项政策来推动钠离子电池的产业化进程。在2022年发布的《十四五可再生能源发展规划》中,提出加强可再生能源前沿技术和核心技术装备攻关。研发储备钠离子电池、液态金属电池、固态锂离子电池、金属空气电池、锂硫电池等高能量密度储能技术。在2021年发布的《关于在我国大力发展钠离子电池的提案》中,提到锂离子电池、钠离子电池等新型电池作为推动新能源产业发展的压舱石,是支撑新能源在电力、交通、工业、通信、建筑等领域广泛应用的重要基础,也是实现碳达峰、碳中和目标的关键支撑之一。关于促进储能技术与产业发展的指导意见2017年10月11日,《关于促进储能产业与技术发展的指导意见》(简称《指导意见》)正式发布。《指导意见》是我国大规模储能技术及应用发展的首个指导性政策,由国家能源局科技司牵头,电力司、新能源司、市场监管司参加的起草工作小组和20位专家组成的专家咨询组,委托中关村储能产业技术联盟牵头,中科院工程热物理所、中科院物理所、中国电科院、清华大学等具体负责相关研究工作。随着《指导意见》的颁发与落实,以及储能技术的迅猛发展、成本不断下降、电力市场改革的推进,储能技术与产业应用未来的前景无疑将越来越广阔。《指导意见》从促进储能技术与产业发展的总体要求、重点任务和保障措施三个方面提出了指导性意见,为全面促进储能技术与产业发展提供了政策依据。《指导意见》还指出,近年来,我国储能呈现多元发展的良好态势:抽水蓄能发展迅速;压缩空气储能、飞轮储能,超导储能和超级电容,铅蓄电池、锂离子电池、钠硫电池、液流电池等储能技术研发应用加速;储热、储冷、储氢技术也取得了一定进展。我国储能技术总体上已经初步具备了产业化的基础。加快储能技术与产业发展,对于构建清洁低碳、安全高效的现代能源产业体系,推进我国能源行业供给侧改革、推动能源生产和利用方式变革具有重要战略意义,同时还将带动从材料制备到系统集成全产业链发展,成为提升产业发展水平、推动经济社会发展的新动能。中国钠离子电池市场前瞻钠离子电池主要分为四种,其中钠硫电池和钠-氯化钠电池为高温钠离子电池,水系钠离子电池和溶剂系钠离子电池为常温钠离子电池。目前已开始小批量应用的主要是常温钠离子电池,尤其是以溶剂系钠离子电池。在产业链方面,上游的正极和负极以及电解液添加剂都需要培育新的供应链,在隔膜、集流体、电解液溶质以及生产线可以与锂离子电池共用;而在下游,主要取代铅酸电池、锰酸锂电池、磷酸铁锂电池的市场,主要应用领域为电动二轮车、低速车、储能、电动船舶以及电动工具。造成钠离子电池目前没有大规模应用的主要原因有:钠离子电池现阶段相对于锂离子电池并没有明显的价格优势。钠离子电池相对于锂离子电池(磷酸铁锂电池和锰酸锂电池)存在能量密度劣势。由于钠离子电池产业链不够成熟,钠离子电池的配方没有经过足够多的迭代,性能潜力挖掘不够,潜在的性能缺陷较多。由于用户的使用惯性和路径依赖,用户更愿意接受成熟度更高的锂离子电池。各细分领域,钠离子电池并没有表现出不可替代的性能。钠离子电池没有大规模应用,导致钠离子电池上游供应链并不成熟,钠离子电池没有获得明显的成本优势。从废旧锂电池回收退下来的梯次利用锂电池价格低廉,并且供应量不断增加,进一步削减了钠离子电池的市场可能性。目前国内主流的最为成熟的技术路线为:正极为钠过度金属氧化物,过度金属为铜铁锰或镍铁锰,负极为硬碳或无烟煤软碳,电解液溶质为六氟磷酸钠,电解液溶剂与目前锂离子电池溶剂相同,正负极集流体均为铝箔。钠离子电池的主要竞争产品为锰酸锂电池、磷酸铁锂电池、铅酸电池以及梯次利用锂电池。通过计算钠离子正负极能量密度差异,可以得出,在相同技术条件下,钠离子的能量密度约为锰酸锂电池和磷酸铁锂电池能量密度的0.7-0.8倍。在对比钠离子电池与锰酸锂电池及磷酸铁锂电池的性能后,高工产研锂电研究所认为钠离子电池未来的应用领域有望主要集中在电动二轮车市场、家庭储能、低速车以及备电等领域。钠离子电池在资源丰富度、成本等方面具有优势钠离子电池与锂离子电池摇椅式工作原理类似,主要依靠钠离子在正极和负极之间移动来工作。近几年,钠离子电池开始逐步进入规模化试验示范阶段。2018年6月,首辆钠离子电池低速电动车问世;2021年6月,中科海钠发布世界首个1MWh钠离子电池储能系统。这意味着,继铅蓄电池、锂离子电池等电化学储能体系后,钠离子电池开始在储能领域崭露头角,有望推动新能源产业的进一步发展和变革。钠离子电池在资源丰富度、成本等方面具有一定优势。一是钠元素储备更丰富,钠是地壳中储量第六丰富的元素,地理分布均匀,成本低廉;而锂资源在地壳中储量仅为0.002%,不到钠的千分之一,且全球分布具有地域性。二是钠离子化合物可获取性强,价格稳定且低廉。此外,在低电压下铝不会和钠合金化,因此钠离子电池负极可使用铝集流体而不必像锂电池使用铜集流体,从而降低电池的成本和重量。三是钠元素和锂元素有相似的物理化学特性及储存机制,钠离子电池有相对稳定的电化学性能和安全性。另一方面,目前钠离子电池在产业化进程中尚存在能量密度较低、循环寿命较短、配套供应链与产业链不完善等问题,仍处于商业化探索和持续改进中。预计未来随着产业投入的加大,技术走向成熟、产业链逐步完善,高性价比的钠离子电池有望成为锂离子电池的重要补充,尤其是在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论