2022-2023学年广东省深圳市龙华区九级数学八下期末学业水平测试试题含解析_第1页
2022-2023学年广东省深圳市龙华区九级数学八下期末学业水平测试试题含解析_第2页
2022-2023学年广东省深圳市龙华区九级数学八下期末学业水平测试试题含解析_第3页
2022-2023学年广东省深圳市龙华区九级数学八下期末学业水平测试试题含解析_第4页
2022-2023学年广东省深圳市龙华区九级数学八下期末学业水平测试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,矩形中,对角线、交于点.若,,则的长为()A.6 B.5 C.4 D.32.化简8aA.4aa B.-4aa C.2a3.下列运算中正确的是()A. B. C. D.4.下列命题,①4的平方根是2;②有两边和一角相等的两个三角形全等;③等腰三角形的底角必为锐角;④两组对角分别相等的四边形是平行四边形.其中真命题有()A.4个 B.3个 C.2个 D.1个5.一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大6.某校九年级(1)班全体学生2018年初中毕业体育考试的成绩统计如表:成绩(分)202224262830人数(人)154101510根据表中的信息判断,下列结论中错误的是()A.该班一共有45名同学B.该班学生这次考试成绩的众数是28C.该班学生这次考试成绩的平均数是25D.该班学生这次考试成绩的中位数是287.如图,在矩形中,,,过对角线交点作交于点,交于点,则的长是()A.1 B. C.2 D.8.下列定理中,没有逆定理的是()A.两直线平行,同位角相等B.全等三角形的对应边相等C.全等三角形的对应角相等D.在角的内部,到角的两边距离相等的点在角的平分线上9.我国古代用勾、股和弦分别表示直角三角形的两条直角边和斜边,如图由四个全等的直角三角形和一个小正方形拼成一个大正方形,数学家邹元治利用该图证明了勾股定理,现已知大正方形面积为9,小正方形面积为5,则每个直角三角形中勾与股的差的平方为()A.4 B.3 C.2 D.110.已知:如图在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线x0经过D点,交AB于E点,且OB∙AC=160,则点E的坐标为().A.(3,8) B.(12,) C.(4,8) D.(12,4)11.下列调查中,适合用普查方式的是()A.夏季冷饮市场上某种冰淇淋的质量 B.某品牌灯泡的使用寿命C.某校九年级三班学生的视力 D.公民保护环境的意识12.计算的结果是()A.﹣2 B.﹣1 C.1 D.2二、填空题(每题4分,共24分)13.已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为_____.14.D、E、F分别是△ABC各边的中点.若△ABC的周长是12cm,则△DEF的周长是____cm.15.若=3-x,则x的取值范围是__________.16.如图,是内的一点,,点分别在的两边上,周长的最小值是____.17.如图,直线L1、L2、L3分别过正方形ABCD的三个顶点A、D、C,且相互平行,若L1、L2的距离为1,L2、L3的距离为2,则正方形的边长为__________.18.如图,在等腰梯形ABCD中,AC⊥BD,AC=6cm,则等腰梯形ABCD的面积为__________cm1.三、解答题(共78分)19.(8分)为了让学生拓展视野、丰富知识,加深与自然和文化的亲近感,增加对集体生活方式和社会公共道德的体验,我区某中学决定组织部分师生去随州炎帝故里开展研学旅行活动.在参加此次活动的师生中,若每位老师带个学生,还剩个学生没人带;若每位老师带个学生,就有一位老师少带个学生.为了安全,既要保证所有师生都有车坐,又要保证每辆客车上至少要有名老师.现有甲、乙两种大客车,它们的载客量和租金如表所示.(1)参加此次研学旅行活动的老师有人;学生有人;租用客车总数为辆;(2)设租用辆乙种客车,租车费用为元,请写出与之间的函数关系式;(3)在(2)的条件下,学校计划此次研学旅行活动的租车总费用不超过元,你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.20.(8分)“五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.[来根据以上信息,解答下列问题:(1)设租车时间为小时,租用甲公司的车所需费用为元,租用乙公司的车所需费用为元,分别求出,关于的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.21.(8分)如图,分别表示甲步行与乙骑自行车(在同一条路上)行走的路程、与时间的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距千米;(2)走了一段路程后,乙有事耽搁,停下来时间为小时;(3)甲从出发起,经过小时与乙相遇;(4)甲行走的平均速度是多少千米小时?22.(10分)如图,在△ABC中,CE平分∠ACB交AB于E点,DE∥BC,DF∥AB.(1)若∠BCE=25°,请求出∠ADE的度数;(2)已知:BF=2BE,DF交CE于P点,连结BP,AB⊥BP.①猜想:△CDF的边DF与CD的数量关系,并说明理由;②取DE的中点N,连结NP.求证:∠ENP=3∠DPN.23.(10分)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.24.(10分)如图,在▱ABCD中,E,F是对角线AC上不同两点,,求证:四边形BFDE是平行四边形.25.(12分)如图,已知△ABC.利用直尺和圆规,根据下列要求作图(不写作法,保留作图痕迹),并回答问题.(1)作∠ABC的平分线BD、交AC于点D;(2)作线段BD的垂直平分线,交AB于点E,交BC于点F,连接DE,DF;(3)写出你所作出的图形中的相等线段.26.甲乙两位同学参加数学综合素质测试,各项成绩如下表:(单位:分)数与代数空间与图形统计与概率综合与实践学生甲93938990学生乙94929486(1)分别计算甲、乙同学成绩的中位数;(2)如果数与代数,空间与图形,统计与概率,综合与实践的成绩按4:3:1:2计算,那么甲、乙同学的数学综合素质成绩分别为多少分?

参考答案一、选择题(每题4分,共48分)1、B【解析】

由矩形的性质可得:∠ABC=90°,OA=OC=OB=OD=1,∠AOB=2∠ACB=60°,△AOB为等边三角形,故AB=OA=1.【详解】解:∵四边形ABCD是矩形,∴OA=OC=OB=OD=AC=1,∠ABC=90°,∴∠OBC=∠ACB=30°∵∠AOB=∠OBC+∠ACB∴∠AOB=60°∵OA=OB∴△AOB是等边三角形∴AB=OA=1故选:B【点睛】本题考查了矩形的性质,等边三角形的判定和性质,等腰三角形判定和性质,是基础题,比较简单.2、C【解析】

根据二次根式的性质进行化简即可.【详解】8∵a≥1,∴原式=2a2a故选C.【点睛】本题主要考查二次根式的性质、化简,关键在于根据已知推出a≥1.3、B【解析】

根据二次根式的加法法则对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对C进行判断;根据乘方的意义对D进行判断.【详解】A.不能合并,所以A选项错误;B.原式=,所以B选项正确;C.原式=,所以C选项错误;D.原式=3,所以D选项错误。故选B.【点睛】此题考查二次根式的混合运算,掌握运算法则是解题关键4、C【解析】

根据平方根的定义对①进行判断;根据全等三角形的判定方法对②进行判断;根据等腰三角形的性质和平行四边形的判定方法对③④进行判断.【详解】解:①4的平方根是±2,是假命题;

②有两边和其夹角相等的两个三角形全等,是假命题;

③等腰三角形的底角必为锐角,是真命题;

④两组对角分别相等的四边形是平行四边形是真命题;

故选:C.【点睛】本题考查命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5、D【解析】

A.摸到红球是随机事件,故此选项错误;B.摸到白球是随机事件,故此选项错误;C.摸到红球比摸到白球的可能性相等,根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故此选项错误;D.根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故此选项正确;故选D.6、C【解析】

根据总数,众数,中位数的定义即可一一判断;【详解】解:该班一共有:1+5+4+10+15+10=45(人),众数是28分,中位数为28分,故A、B、D正确,C错误,故选:C.【点睛】本题考查总数,众数,中位数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.7、B【解析】

连接,由矩形的性质得出,,,,由线段垂直平分线的性质得出,设,则,在中,由勾股定理得出方程,解方程即可.【详解】如图:连接,∵四边形是矩形,∴,,,,∵,∴,设,则,在中,由勾股定理得:,解得:,即;故选B.【点睛】本题考查了矩形的性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,由勾股定理得出方程是解题的关键.8、C【解析】

写出各个定理的逆命题,判断是否正确即可.【详解】解:两直线平行,同位角相等的逆命题是同位角相等,两直线平行,正确,A有逆定理;全等三角形的对应边相等的逆命题是对应边相等的两个三角形全等,正确,B有逆定理;全等三角形的对应角相等的逆命题是对应角相等的两个三角形全等,错误,C没有逆定理;在角的内部,到角的两边距离相等的点在角的平分线上的逆命题是角的平分线上的点到角的两边距离相等,正确,D有逆定理;故选:C.【点睛】本题考查的是命题与定理,属于基础知识点,比较简单.9、D【解析】

设勾为x,股为y,根据面积求出xy=2,根据勾股定理求出x2+y2=5,根据完全平方公式求出x﹣y即可.【详解】设勾为x,股为y(x<y),∵大正方形面积为9,小正方形面积为5,∴4×xy+5=9,∴xy=2,∵x2+y2=5,∴y﹣x====1,(x﹣y)2=1,故选:D.【点睛】本题考查了勾股定理和完全平方公式,能根据已知和勾股定理得出算式xy=2和x2+y2=5是解此题的关键.10、B【解析】

过点B作轴于点,由可求出菱形的面积,由点的坐标可求出的长,根据勾股定理求出的长,故可得出点的坐标,对角线相交于D点可求出点坐标,用待定系数法可求出双曲线的解析式,与的解析式联立,即可求出点的坐标.【详解】过点B作轴于点,,点的坐标又菱形的边长为10,在中,又点是线段的中点,点的坐标为又直线的解析式为联立方程可得:解得:或,点的坐标为故选:B.【点睛】本题主要考查反比例函数与一次函数以及菱形综合,熟练的掌握菱形面积求法是解决本题的关键.11、C【解析】

由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,据此解答即可.【详解】解:A、夏季冷饮市场上某种冰淇淋的质量,适合抽样调查,故本选项错误;B、某品牌灯泡的使用寿命,适合抽样调查,故本选项错误;C、某校九年级三班学生的视力,适合全面调查,故本选项正确;D、调查公民保护环境的意识,适合抽样调查,故本选项错误.故选:C.【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12、C【解析】

直接利用二次根式的性质化简得出答案.【详解】.解:.故选:C.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.二、填空题(每题4分,共24分)13、1【解析】

根据OB和OC分别平分∠ABC和∠ACB,和DE∥BC,利用两直线平行,内错角相等和等量代换,求证出DB=DO,OE=EC.然后即可得出答案.【详解】解:∵在△ABC中,OB和OC分别平分∠ABC和∠ACB,

∴∠DBO=∠OBC,∠ECO=∠OCB,

∵DE∥BC,

∴∠DOB=∠OBC=∠DBO,∠EOC=∠OCB=∠ECO,

∴DB=DO,OE=EC,

∵DE=DO+OE,

∴DE=BD+CE=1.

故答案为1.【点睛】此题主要考查学生对等腰三角形的判定与性质平行线段性质的理解和掌握,此题关键是求证DB=DO,OE=EC,难度不大,是一道基础题.14、1【解析】如图所示,∵D、E分别是AB、BC的中点,∴DE是△ABC的中位线,∴DE=AC,同理有EF=AB,DF=BC,∴△DEF的周长=(AC+BC+AB)=×12=1cm,故答案为:1.15、【解析】试题解析:∵=3﹣x,

∴x-3≤0,

解得:x≤3,

16、【解析】

根据轴对称图形的性质,作出P关于OA、OB的对称点M、N,连接OM、ON、MN,根据两点之间线段最短得到MN即为△PQR周长的最小值,然后证明△MON为等腰直角三角形,利用勾股定理求出MN即可.【详解】解:分别作P关于OA、OB的对称点M、N,连接OM、ON,连接MN交OA、OB交于Q、R,则△PQR符合条件且△PQR的周长等于MN,由轴对称的性质可得:OM=ON=OP=10,∠MOA=∠POA,∠NOB=∠POB,∴∠MON=∠MOP+∠NOP=2∠AOB=90°,∴△MON为等腰直角三角形.∴MN=,所以△PQR周长的最小值为,故答案为:.【点睛】此题考查了轴对称最短路径问题,等腰直角三角形的判定和性质以及勾股定理,根据题意构造出对称点,转化为直角三角形的问题是解题的关键.17、【解析】

如图,过D作于D,交于E,交于F,根据平行的性质可得,再由同角的余角相等可得,即可证明,从而可得,根据勾股定理即可求出AD的长度.【详解】如图,过D作于D,交于E,交于F∵∴∴由同角的余角相等可得∵∴∴∴故答案为:.【点睛】本题考查了正方形与平行线的问题,掌握平行线的性质、全等三角形的性质以及判定定理、勾股定理是解题的关键.18、2【解析】

根据等腰梯形的性质、梯形面积公式求解即可.【详解】∵四边形ABCD是等腰梯形,∴∴等腰梯形ABCD的面积故答案为:2.【点睛】本题考查了梯形的面积问题,掌握等腰梯形的性质、梯形面积公式是解题的关键.三、解答题(共78分)19、(1);;;(2);(3)共有种租车方案:方案一:租用甲种客车辆,乙种客车辆;方案二:租用甲种客车辆,乙种客车辆;方案三:租用甲种客车辆,乙种客车辆;最节省费用的租车方案是:租用甲种客车辆,乙种客车辆;【解析】

(1)设出老师有x名,学生有y名,得出二元一次方程组,解出即可;(2)设用辆乙,则甲种客车数为:辆,代入计算即可(3)设租用x辆乙种客车,则甲种客车数为:(8-x)辆,由题意得出400x+300(8-x)≤3100,得出x取值范围,分析得出即可.【详解】(1)设老师有x名,学生有y名。依题意,列方程组,解得,∵每辆客车上至少要有2名老师,∴汽车总数不能超过8辆;又要保证300名师生有车坐,汽车总数不能小于=(取整为8)辆,综合起来可知汽车总数为8辆;答:老师有16名,学生有284名;租用客车总数为8辆。(2)租用辆乙,甲种客车数为:辆,.(3)租车总费用不超过元,租用乙种客车不少于辆,,解得:,为使名师生都有座,,解得:,取整数为.共有种租车方案:方案一:租用甲种客车辆,乙种客车辆;方案二:租用甲种客车辆,乙种客车辆;方案三:租用甲种客车辆,乙种客车辆;由(2),随的减小而减小,且为整数,当时,元,故最节省费用的租车方案是:租用甲种客车辆,乙种客车辆;【点睛】本题考查二元一次方程组的应用,一次函数以及一元一次不等式的应用,正确列出式子是解题关键.20、(1)y1=15x+80(x≥0);y2=30x(x≥0);(2)当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.【解析】试题分析:(1)根据函数图象中的信息,分别运用待定系数法求得y1,y2关于x的函数表达式即可;(2)当y1=y2时,15x+80=30x,当y>y2时,15x+80>30x,当y1<y2时,15x+80<30x,分别求解即可.试题解析:(1)设y1=k1x+80,把点(1,95)代入,可得95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80>30x,解得x>;∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.考点:1.用待定系数法求一次函数关系式;2.一次函数的应用.21、(1)1;(2)1;(3)3;(4)【解析】

利用一次函数和分段函数的性质,结合图象信息,一一解答即可.【详解】解:(1)由图象可知,乙出发时,乙与甲相距1千米.故答案为:1.(2))由图象可知,走了一段路程后,乙有事耽搁,停下来的时间为:1.5-0.5=1小时;故答案为:1.(3)由图象可知,甲从出发起,经过3小时与乙相遇.故答案为:3.(4)甲行走的平均速度是:(22.5-1)÷3=千米/小时.【点睛】本题考查一次函数的应用、路程、速度、时间的关系等知识,解题的关键是灵活运用图中信息解决问题,所以中考常考题型.22、(1)∠ADE=50°;(2)①CD=2DF;见解析;②见解析.【解析】

(1)利用角平分线得出∠ACB=2∠BCE=50°,再利用两直线平行,同位角相等即可得出结论;(2)先判断出四边形BEDF是平行四边形,进而得出DE=2DF,再利用角平分线及平行线得出DE=CD,即可得出结论;(3)先利用倍长中线法得出NG=NP,∠EGN=∠DPN,再用直角三角形的中线得出∠EGN=∠EBN,再构造出菱形判断出∠BEN=∠BHN,即可得出结。【详解】(1)∵CE平分∠ACB交AB于E点,∴∠ACB=2∠BCE,∵∠BCE=25°,∴∠ACB=50°,∵DE∥BC,∴∠ADE=∠ACB=50°;(2)①∵DE∥BC,DF∥AB,∴四边形BEDF是平行四边形,∴DE=BF,DF=BE,∵BF=2BE,∴DE=2DF,∵CE平分∠ACB交AB于E点,∴∠BCE=∠ACE,∵DE∥BC,∴∠DEC=∠BCE,∴∠DEC=∠DCE,∴CD=DE,∵DE=2DF,∴CD=2DF;(3)如图,延长PN交AB于G,∵DF∥AB,∴∠EGN=∠DPN,∵∠ENG=∠DNP,∵点N是DE中点,∴EN=DN,∴△ENG≌△DNP(AAS),∴∠EGN=∠DPN,GN=PN,∵AB⊥BP,∴∠ABP=90°,∴BN=GN,∴∠EGN=∠EBN,∵DE=2EN,DE=2BE,∴EN=BE,∴∠ENB=∠EBN=∠EGN=∠DPN,过点N作NH∥BE交BC于H,∵BE∥DF,∴NH∥DF,∴∠PNH=∠DPN,∵EN∥BH,NH∥BE,∴四边形BENH是平行四边形,∵BE=EN,∴▱BENH是菱形,∵BE是菱形对角线,∴∠BNH=∠BNE=DPN,∴∠ENP=∠BNE+∠BNH+∠PNH=∠DPN+∠DPN+∠DPN=3∠DPN.【点睛】此题是三角形综合题,主要考查了角平分线的定义,平行线的性质,平行四边形的判定和性质,菱形的判定和性质,全等三角形的判定和性质,直角三角形的性质,构造全等三角形和菱形是解本题的关键.23、见解析.【解析】

根据“ASA”证明ΔAOE≅ΔCOF,即可证明OE=OF.【详解】证明:∵四边形ABCD是平行四边形,∴OA=OC,AD//BC.∴∠OAE=∠OCF.在ΔOAE和ΔOCF,∠OAE=∠OCFOA=OC∴ΔAOE≅ΔCOF,∴OE=OF.【点睛】本题考查了平行四边形的性质,全等三角形的判定与性质,掌握全等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论