2022-2023学年辽宁省丹东第九中学数学八年级第二学期期末预测试题含解析_第1页
2022-2023学年辽宁省丹东第九中学数学八年级第二学期期末预测试题含解析_第2页
2022-2023学年辽宁省丹东第九中学数学八年级第二学期期末预测试题含解析_第3页
2022-2023学年辽宁省丹东第九中学数学八年级第二学期期末预测试题含解析_第4页
2022-2023学年辽宁省丹东第九中学数学八年级第二学期期末预测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠22.如图,以原点O为圆心,OB长为半径画弧与数轴交于点A,若点A表示的数为x,则x的值为()A.5 B.-5 C.5-2 D.2-53.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分 D.两组对角分别相等4.已知一次函数y=kx+b(k≠0)图象经过第二、三、四象限,则一次函数y=﹣bx+kb图象可能是()A. B. C. D.5.下列图案既是轴对称图形,又是中心对称图形的是()A.4个 B.3个 C.2个 D.1个6.下列图案是我国几大银行的标志,其中是中心对称图形但不是轴对称图形的是()A. B. C. D.7.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()A.3cm B.4cm C.23cm D.8.如图,在平面直角坐标系xOy中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,顶点C的坐标为(﹣3,4),反比例函数y的图象与菱形对角线AO交于D点,连接BD,当BD⊥x轴时,k的值是()A. B. C.﹣12 D.9.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、1.应该选()参加.A.甲 B.乙 C.甲、乙都可以 D.无法确定10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF,若四边形ABCD的面积为6,则△BEF的面积为()A.2 B. C. D.3二、填空题(每小题3分,共24分)11.如图∆DEF是由∆ABC绕着某点旋转得到的,则这点的坐标是__________.12.苏州市2017年6月份最后六大的最高气温分别为31,34,36,27,25,33(单位:℃).这组数据的极差是_____.13.如图,△ABO的面积为3,且AO=AB,反比例函数y=kx的图象经过点A,则k的值为___14.已知一次函数的图象过点(3,5)与点(-4,-9),则这个一次函数的解析式为____________.15.若三角形的三边a,b,c满足,则该三角形的三个内角的度分别为____________.16.化简:___________.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为8cm,正方形A的面积是10cm1,B的面积是11cm1,C的面积是13cm1,则D的面积为____cm1.18.一组数据:2,﹣1,0,x,1的平均数是0,则x=_____.三、解答题(共66分)19.(10分)如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,建立平面直角坐标系,△ABC的顶点均在格点上.(不写作法)(1)以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1,并写出B1的坐标;(2)再把△A1B1C1绕点C1顺时针旋转90°,得到△A2B2C1,请你画出△A2B2C1,并写出B2的坐标.20.(6分)如图,将□ABCD的对角线BD向两个方向延长至点E和点F,使BE=DF,证:四边形AECF是平行四边形.21.(6分)在读书月活动中,某校号召全体师生积极捐书,为了解所捐书籍的种类,图书管理员对部分书籍进行了抽样调查,根据调查数据绘制了如下不完整的统计图表.请你根据统计图表所提供的信息回答下面问题:某校师生捐书种类情况统计表种类

频数

百分比

A.科普类

12

n

B.文学类

14

35%

C.艺术类

m

20%

D.其它类

6

15%

(1)统计表中的m=,n=;(2)补全条形统计图;(3)本次活动师生共捐书2000本,请估计有多少本科普类图书?22.(8分)王达和李力是八(2)班运动素质最好的两位同学,为了选出一名同学参加全校的体育运动大寒,班主任针对学校要测试的五个项目,对两位同学进行相应的测试(成绩:分),结果如下:姓名力量速度耐力柔韧灵敏王达60751009075李力7090808080根据以上测试结果解答下列问题:(1)补充完成下表:姓名平均成绩(分)中位数(分)众数(分)方差(分2)王达807575190李力(2)任选一个角度分析推选哪位同学参加学校的比赛比较合适?并说明理由;(3)若按力量:速度:耐力:柔韧:灵敏=1:2:3:3:1的比例折合成综合分数,推选得分同学参加比赛,请通过计算说明应推选哪位同学去参赛。23.(8分)如图,在中,,平分,交于点,交的延长线于点,交于点.(1)求证:四边形为菱形;(2)若,,求的长.24.(8分)如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD于点E.(1)如图1,猜想∠QEP=°;(2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;(3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.25.(10分)如图,在中,E点为AC的中点,且有,,,求DE的长.26.(10分)(1)探究新知:如图1,已知与的面积相等,试判断与的位置关系,并说明理由.(2)结论应用:①如图2,点,在反比例函数的图像上,过点作轴,过点作轴,垂足分别为,,连接.试证明:.②若①中的其他条件不变,只改变点,的位置如图3所示,请画出图形,判断与的位置关系并说明理由.

参考答案一、选择题(每小题3分,共30分)1、D【解析】试题解析:由题意得,且解得且故选D.2、B【解析】

根据勾股定理列式求出x2,再利用平方根的相反数定义解答.【详解】由图可知,x2=12+22=5,

则x1=−5,x2=5(舍去).

故选:B.【点睛】考查了实数与数轴,主要是数轴上无理数的作法,需熟练掌握.3、B【解析】根据矩形与菱形的性质对各选项解析判断后利用排除法求解:A.矩形与菱形的两组对边都分别平行,故本选项错误;B.矩形的对角线相等,菱形的对角线不相等,故本选项正确;C.矩形与菱形的对角线都互相平分,故本选项错误;D.矩形与菱形的两组对角都分别相等,故本选项错误.故选B.4、A【解析】

首先根据一次函数的性质确定k,b的符号,再确定一次函数y=﹣bx+kb系数的符号,判断出函数图象所经过的象限.【详解】∵一次函数y=kx+b经过第二,三,四象限,∴k<0,b<0,∴−b>0,kb>0,所以一次函数y=−bx+kb的图象经过一、二、三象限,故选:A.【点睛】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k、b的正负.5、B【解析】

轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形;中心对称图形的定义:一个图形绕一点旋转180°后能够与原图形完全重合即是中心对称图形.【详解】解:选项B只是轴对称图形,其它三个均既是轴对称图形,又是中心对称图形,故选B.【点睛】本题考查轴对称图形与中心对称图形的定义,本题属于基础应用题,只需学生熟练掌握轴对称图形与中心对称图形的定义,即可完成.6、D【解析】

根据轴对称图形与中心对称图形的概念求解.【详解】解:A、既是轴对称图形又是中心对称图形,故本选项不符合题意;

B、是轴对称图形,不是中心对称图形,故本选项不符合题意;

C、不是轴对称图形,也不是中心对称图形,故本选项不符合题意;

D、不是轴对称图形,是中心对称图形,故本选项符合题意.

故选:D.【点睛】本题考查中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、B【解析】

利用对角线性质求出AO=4cm,又根据∠AOD=120°,易知△ABO为等边三角形,从而得到AB的长度.【详解】AC、BD为矩形ABCD的对角线,所以AO=12AC=4cm,BO=12BD=又因为∠AOD=120°,所以∠AOB=60°,所以三角形ABO为等边三角形,故AB=AO=4cm,故选B.【点睛】本题考查矩形的对角线性质,本题关键在于能够证明出三角形是等边三角形.8、B【解析】

先利用勾股定理计算出OC=5,再利用菱形的性质得到AC=OB=OC=5,AC∥OB,则B(-5,0),A(-8,4),接着利用待定系数法确定直线OA的解析式为y=-x,则可确定D(-5,),然后把D点坐标代入y=中可得到k的值.【详解】∵C(−3,4),

∴OC==5,

∵四边形OBAC为菱形,

∴AC=OB=OC=5,AC∥OB,

∴B(−5,0),A(−8,4),

设直线OA的解析式为y=mx,

把A(−8,4)代入得−8m=4,解得m=−,

∴直线OA的解析式为y=-x,

当x=−5时,y=-x=,则D(−5,),

把D(−5,)代入y=,

∴k=−=.

故选B.【点睛】本题考查反比例函数图象上点的坐标特征和菱形的性质,解题的关键是掌握反比例函数图象上点的坐标特征和菱形的性质.9、A【解析】试题分析:由题意可得,甲的平均数为:(9+8+7+7+9)÷5=8;方差为:15乙的平均数为:(10+8+9+7+1)÷5=8;方差为:15∵0.8<2,∴选择甲射击运动员,故选A.考点:方差.10、C【解析】试题分析:连接AC,过B作EF的垂线交AC于点G,交EF于点H,∵∠ABC=90°,AB=BC=2,∴AC=,∵△ABC为等腰三角形,BH⊥AC,∴△ABG,△BCG为等腰直角三角形,∴AG=BG=2,∵S△ABC=•AB•AC=×2×2=4,∴S△ADC=2,∵,∴GH=BG=,∴BH=,又∵EF=AC=2,∴S△BEF=•EF•BH=×2×=,故选C.考点:1勾股定理;2三角形面积.二、填空题(每小题3分,共24分)11、(0,1).【解析】试题分析:根据旋转的性质,对应点到旋转中心的距离相等,可知,只要连接两组对应点,作出对应点所连线段的两条垂直平分线,其交点即为旋转中心.试题解析:如图,连接AD、BE,作线段AD、BE的垂直平分线,两线的交点即为旋转中心O′.其坐标是(0,1).考点:坐标与图形变化-旋转.12、32【解析】

根据极差的定义进行求解即可得答案.【详解】这组数据的最大值是36,最小值是25,这组数据的极差是:36﹣25=1(℃),故答案为1.【点睛】本题考查了极差,掌握求极差的方法是解题的关键,求极差的方法是用一组数据中的最大值减去最小值.13、1【解析】

过点A作OB的垂线,垂足为点C,根据等腰三角形的性质得OC=BC,再根据三角形的面积公式得到12OB•AC=1,易得OC•AC=1,设A点坐标为(x,y),即可得到k=xy=OC•AC=1【详解】过点A作OB的垂线,垂足为点C,如图,∵AO=AB,∴OC=BC=12OB∵△ABO的面积为1,∴12OB⋅AC=1∴OC⋅AC=1.设A点坐标为(x,y),而点A在反比例函数y=kx(k>0)∴k=xy=OC⋅AC=1.故答案为:1.【点睛】此题考查反比例函数系数k的几何意义,解题关键在于作辅助线.14、【解析】

设一次函数的解析式为:,利用待定系数法把已知点的坐标代入解析式,解方程组即可得答案.【详解】解:设一次函数的解析式为:,解得:所以这个一次函数的解析式为:故答案为:【点睛】本题考查的是利用待定系数法求解一次函数的解析式,掌握待定系数法是解题的关键.15、45°,45°,90°.【解析】

根据勾股定理的逆定理可知这个三角形是直角三角形,然后根据等腰三角形的判定得到这个三角形是等腰直角三角形,于是角度可求.【详解】解:∵三角形的三边满足,

∴设a=k,b=k,c=k,

∴a=b,

∴这个三角形是等腰三角形,

∵a2+b2=k2+k2=2k2=(k)2=c2,

∴这个三角形是直角三角形,

∴这个三角形是等腰直角三角形,

∴三个内角的度数分别为:45°,45°,90°.

故答案为:45°,45°,90°.【点睛】本题考查了等腰直角三角形的判定和性质,勾股定理的逆定理的运用,熟记勾股定理的逆定理是解题的关键.16、【解析】

被开方数因式分解后将能开方的数开方即可化简二次根式.【详解】,故答案为:.【点睛】此题考查二次根式的化简,正确掌握最简二次根式的特点并正确将被开方数因式分解是解题的关键.17、30【解析】

根据正方形的面积公式,运用勾股定理可得结论:四个小正方形的面积之和等于最大的正方形的面积64cm1,问题即得解决.【详解】解:如图记图中三个正方形分别为P、Q、M.

根据勾股定理得到:A与B的面积的和是P的面积;C与D的面积的和是Q的面积;而P、Q的面积的和是M的面积.

即A、B、C、D的面积之和为M的面积.

∵M的面积是81=64,∴A、B、C、D的面积之和为64,设正方形D的面积为x,∴11+10+13+x=64,

∴x=30,故答案为30.【点睛】本题主要考查勾股定理,把正方形的面积转化为相关直角三角形的边长,再通过勾股定理探索图形面积的关系是解决此类问题常见的思路.18、-2【解析】

根据平均数的公式可得关于x的方程,解方程即可得.【详解】由题意得,解得:x=-2,故答案为:-2.【点睛】本题考查了平均数,熟练掌握平均数的计算公式是解题的关键.三、解答题(共66分)19、(1)B1的坐标(﹣5,4);(2)B2的坐标(﹣1,2).【解析】

(1)作出各点关于原点的对称点,再顺次连接,并写出B1的坐标即可;(2)根据图形旋转的性质画出△A2B2C2,并写出B2的坐标即可.【详解】(1)如图,△A1B1C1即为所求,由图可知B1的坐标(﹣5,4);(2)如图,△A2B2C2即为所求,由图可知B2的坐标(﹣1,2).【点睛】考查的是作图-旋转变换,熟知图形旋转不变性的性质是解答此题的关键.20、答案见解析【解析】

首先连接AC交EF于点O,由平行四边形ABCD的性质,可知OA=OC,OB=OD,又因为BE=DF,可得OE=OF,即可判定AECF是平行四边形.【详解】证明:连接AC交EF于点O;∵平行四边形ABCD∴OA=OC,OB=OD∵BE=DF,∴OE=OF∴四边形AECF是平行四边形.【点睛】此题主要考查平行四边形的判定定理,关键是找出对角线互相平分,即可解题.21、(1)830%;(2)图形见解析;(3)600.【解析】试题分析:(1)n=1﹣35%﹣20%﹣15%=30%,∵此次抽样的书本总数为12÷30%=40(本),∴m=40﹣12﹣14﹣6=8;(2)根据(1)中m值可补全统计图;(3)用样本中科普类书籍的百分比乘以总数可得答案.试题解析:(1)m=8,n=30%;(2)统计图见下图:(3)2000×30%=600(本),答:估计有600本科普类图书.考点:1频率与频数;2条形统计图;3样本估计总体.22、(1)80,80,80,40(2)答案见解析(3)李力【解析】

(1)利用平均数的计算方法求出李力测试成绩的平均数,再求出中位数和众数,然后利用方差公式求出李力测试成绩的方差,填表即可;(2)可以根据表中数据,从两人的平均数,中位数,众数,方差进行分析,可得出结果;(3)根据已知力量:速度:耐力:柔韧:灵敏=1:2:3:3:1的比例折合成综合分数,分别算出两人的综合分数,再比较大小即可得出去参加比赛的选手.【详解】(1)解:李力的平均成绩为:;将5个数排序70,80,80,80,90,最中间的数是80,∴李力的测试成绩的中位数为80;∵80出现了3次,是这组数据中出现次数最多的数,∴这组数据的众数是80;李力测试成绩的方差为:,填表如下姓名平均成绩(分)中位数(分)众数(分)方差(分2)王达807575190李力80808040(2)解:根据表中数据可知,两人的平均成绩相同,从中位数和众数看,李力的成绩比王达的成绩好,从方差看,李力测试成绩的方差比王达次数成绩的方差小,可知李力的成绩比王达的成绩稳定,因此应该推选李力参加比赛。(3)解:∵按力量:速度:耐力:柔韧:灵敏=1:2:3:3:1的比例折合成综合分数,∴王达的成绩为:60×1+75×2+100×3+90×3+75×1=855;李力的成绩为:70×1+90×2+80×3+80×3+80×1=910;910>855∴选李力去参加比赛.【点睛】本题考查了平均数,中位数,众数,方差的意义.平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);一组数据中出现次数最多的数据叫做众数.方差是用来衡量一组数据波动大小的量.解题的关键是正确理解各概念的含义.23、(1)详见解析;(2)【解析】

1)先证出四边形AEGD是平行四边形,再由平行线的性质和角平分线证出∠ADE=∠AED,得出AD=AE,即可得出结论;

(2)连接AG交DF于H,由菱形的性质得出AD=DG,AG⊥DE,证出△ADG是等边三角形,AG=AD=2,得出∠ADH=30°,,由直角三角形的性质得出,得出,证出DG=BE,由平行线的性质得出∠EDG=∠FEB,∠DGE=∠C=∠EBF,证明△DGE≌△EBF得出DE=EF,即可得出结果.【详解】(1)证明:四边形是平行四边形,,,,,四边形是平行四边形,平分,,,,四边形为菱形;(2)解:连接交于,如图所示:四边形为菱形,,,,,是等边三角形,,,,,,,,,,,,,在和中,,,,.【点睛】本题考查了菱形的判定与性质、平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定、等边三角形的判定与性质、直角三角形的性质等知识;熟练掌握菱形的判定与性质是解题的关键.24、(1)∠QEP=60°;(2)∠QEP=60°,证明详见解析;(3)【解析】

(1)如图1,先根据旋转的性质和等边三角形的性质得出∠PCA=∠QCB,进而可利用SAS证明△CQB≌△CPA,进而得∠CQB=∠CPA,再在△PEM和△CQM中利用三角形的内角和定理即可求得∠QEP=∠QCP,从而完成猜想;(2)以∠DAC是锐角为例,如图2,仿(1)的证明思路利用SAS证明△ACP≌△BCQ,可得∠APC=∠Q,进一步即可证得结论;(3)仿(2)可证明△ACP≌△BCQ,于是AP=BQ,再求出AP的长即可,作CH⊥AD于H,如图3,易证∠APC=30°,△ACH为等腰直角三角形,由AC=4可求得CH、PH的长,于是AP可得,问题即得解决.【详解】解:(1)∠QEP=60°;证明:连接PQ,如图1,由题意得:PC=CQ,且∠PCQ=60°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠PCA=∠QCB,则在△CPA和△CQB中,,∴△CQB≌△CPA(SAS),∴∠CQB=∠CPA,又因为△PEM和△CQM中,∠EMP=∠CMQ,∴∠QEP=∠QCP=60°.故答案为60;(2)∠QEP=60°.以∠DAC是锐角为例.证明:如图2,∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∵线段CP绕点C顺时针旋转60°得到线段CQ,∴CP=CQ,∠PCQ=60°,∴∠ACB+∠BCP=∠BCP+∠PCQ,即∠ACP=∠BCQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(S

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论