2022-2023学年山东省济宁市名校数学八下期末学业质量监测试题含解析_第1页
2022-2023学年山东省济宁市名校数学八下期末学业质量监测试题含解析_第2页
2022-2023学年山东省济宁市名校数学八下期末学业质量监测试题含解析_第3页
2022-2023学年山东省济宁市名校数学八下期末学业质量监测试题含解析_第4页
2022-2023学年山东省济宁市名校数学八下期末学业质量监测试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知函数y1=和y2=ax+5的图象相交于A(1,n),B(n,1)两点.当y1>y2时,x的取值范围是()A.x≠1 B.0<x<1 C.1<x<4 D.0<x<1或x>42.下列式子中属于最简二次根式的是()A. B. C. D.3.下列四边形中,是中心对称而不是轴对称图形的是()A.平行四边形 B.矩形 C.菱形 D.正方形4.下列分式中,最简分式是A. B. C. D.5.已知函数是反比例函数,则此反比例函数的图象在()A.第一、三象限 B.第二、四象限C.第一、四象限 D.第二、三象限6.为了增强学生体质,学校发起评选“健步达人”活动,小明用计步器记录自己一个月(30天)每天走的步数,并绘制成如下统计表:步数(万步)1.01.21.11.41.3天数335712在每天所走的步数这组数据中,众数和中位数分别是()A.1.3,1.1 B.1.3,1.3 C.1.4,1.4 D.1.3,1.47.如图,在矩形中无重叠放入面积为16和12的两张正方形纸片,则图中空白部分的面积为()A. B. C. D.8.实数的值在()A.0与1之间 B.1与2之间 C.2与3之间 D.3与4之间9.如图,矩形ABCD中,AB=7,BC=4,按以下步骤作图:以点B为圆心,适当长为半径画弧,交AB,BC于点E,F;再分别以点E,F为圆心,大于EF的长为半径画弧,两弧在∠ABC内部相交于点H,作射线BH,交DC于点G,则DG的长为()A.1 B.1 C.3 D.210.下列函数中,是正比例函数的是()A. B. C. D.二、填空题(每小题3分,共24分)11.一次函数与的图象如图,则的解集是__.12.如图的三边长分别为30,48,50,以它的三边中点为顶点组成第一个新三角形,再以第一个新三角形三边中点为顶点组成第二个新三角形,如此继续,则第6个新三角形的周长为______.13.若关于x的一元二次方程x²-2x+c=0没有实数根.则实数c取值范围是________14.若分式的值为正数,则x的取值范围_____.15.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_____.16.如图,函数y=kx+b(k≠0)的图象经过点(1,2),则不等式kx+b>2的解集为______.17.若关于x的方程x2+mx-3=0有一根是1,则它的另一根为________.18.如图,在四边形中,点是对角线的中点,点、分别是、的中点,,且,则______.三、解答题(共66分)19.(10分)一辆汽车和一辆摩托车分别从,两地去同一城市,它们离地的路程随时间变化的图象如图所示,根据图象中的信息解答以下问题:(1),两地相距______;(2)分别求出摩托车和汽车的行驶速度;(3)若两图象的交点为,求点的坐标,并指出点的实际意义.20.(6分)如图1,已知正方形ABCD的边长为6,E是CD边上一点(不与点C重合),以CE为边在正方形ABCD的右侧作正方形CEFG,连接BF、BD、FD.(1)当点E与点D重合时,△BDF的面积为;当点E为CD的中点时,△BDF的面积为.(2)当E是CD边上任意一点(不与点C重合)时,猜想S△BDF与S正方形ABCD之间的关系,并证明你的猜想;

(3)如图2,设BF与CD相交于点H,若△DFH的面积为,求正方形CEFG的边长.21.(6分)某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨.受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.22.(8分)下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.其中x表示时间,y表示小明离他家的距离.根据图象回答下列问题:①菜地离小明家多远?小明走到菜地用了多少时间?②小明给菜地浇水用了多少时间?③玉米地离菜地、小明家多远?小明从玉米地走回家平均速度是多少?23.(8分)为了考察包装机包装糖果质量的稳定性,从中抽取10袋,测得它们的实际质量(单位:g)如下:505,504,505,498,505,502,507,505,503,506(1)求平均每袋的质量是多少克.(2)求样本的方差.24.(8分)为了有效地落实国家精准扶贫政策,切实关爱贫困家庭学生.某校对全校各班贫困家庭学生的人数情况进行了调查.发现每个班级都有贫困家庭学生,经统计班上贫困家庭学生人数分别有1名、2名、3名、5名,共四种情况,并将其制成了如下两幅不完整的统计图:(1)填空:a=,b=;(2)求这所学校平均每班贫困学生人数;(3)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表或画树状图的方法,求出被选中的两名学生来自同一班级的概率.贫困学生人数班级数1名52名23名a5名125.(10分)已知四边形中,,垂足为点,.(1)如图1,求证:;(2)如图2,点为上一点,连接,,求证:;(3)在(2)的条件下,如图3,点为上一点,连接,点为的中点,分别连接,,+==,,求线段的长.26.(10分)如图1,平行四边形ABCD在平面直角坐标系中,A、B(点A在点B的左侧)两点的横坐标是方程32x2-23x-63(1)求平行四边形ABCD的面积;(2)若P是第一象限位于直线BD上方的一点,过P作PE⊥BD于E,过E作EH⊥x轴于H点,作PF∥y轴交直线BD于F,F为BD中点,其中△PEF的周长是4+42;若M为线段AD上一动点,N为直线BD上一动点,连接HN,NM,求HN+NM-1010DM的最小值,此时y轴上有一个动点G,当(3)在(2)的情况下,将△AOD绕O点逆时针旋转60°后得到ΔA'OD'如图2,将线段OD'沿着x轴平移,记平移过程中的线段OD'为O'D″,在平面直角坐标系中是否存在点

参考答案一、选择题(每小题3分,共30分)1、D【解析】

根据对称性确定直线AB的解析式,求出A、B两点坐标即可解决问题.【详解】解:如图:∵A、B关于直线y=x对称,∴AB⊥直线y=x,∴直线AB的解析式为y=-x+5,∴A(1,4),B(4,1),当y1>y2时,x的取值范围是0<x<1或x>4,故选:D.【点睛】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,属于中考常考题型.2、C【解析】

检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A、被开方数含分母,故A错误;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C正确;D、被开方数含分母,故D错误;故选:C.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.3、A【解析】【分析】根据理解中心对称图形和轴对称图形定义,可以判断.【详解】平行四边形是中心对称图形,不是轴对称图形;矩形是中心对称图形,也是轴对称图形;菱形是中心对称图形,也是轴对称图形;正方形是中心对称图形,也是轴对称图形.只有选项A符合条件.故选A【点睛】本题考核知识点:中心对称图形和轴对称图形.解题关键点:理解中心对称图形和轴对称图形定义.4、C【解析】

最简分式的标准是分子,分母中不含有公因式,不能再约分判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【详解】A、,不符合题意;B、,不符合题意;C、是最简分式,符合题意;D、,不符合题意;故选C.【点睛】本题考查了最简分式的定义及求法一个分式的分子与分母没有公因式时,叫最简分式分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题在解题中一定要引起注意.5、A【解析】

首先根据反比例函数的定义,即可得出,进而得出反比例函数解析式,然后根据其性质,即可判定其所在的象限.【详解】根据已知条件,得即∴函数解析式为∴此反比例函数的图象在第一、三象限故答案为A.【点睛】此题主要考查反比例函数的性质,熟练掌握,即可解题.6、B【解析】

在这组数据中出现次数最多的是1.1,得到这组数据的众数;把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数.【详解】在这组数据中出现次数最多的是1.1,即众数是1.1.要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第15、16个两个数都是1.1,所以中位数是1.1.故选B.【点睛】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.7、B【解析】

分别表示出空白矩形的长和宽,列式计算即可.【详解】解:空白矩形的长为,宽为,∴面积=故选:B.【点睛】本题考查了二次根式的计算,根据题意表示出空白矩形的边长是解题关键.8、B【解析】

直接利用二次根式的估算,的值在1和,即可得出结果.【详解】解:∵1<<,∴实数的值在1与2之间.故选:B.【点睛】此题主要考查了估算无理数大小,正确得出接近的有理数是解题关键.9、C【解析】

利用基本作图得到BG平分∠ABC,再证明△BCG为等腰直角三角形得到GC=CB=4,从而计算CD-CG即可得到DG的长.【详解】由图得BG平分∠ABC,

∵四边形ABCD为矩形,CD=AB=7,

∴∠ABC=∠B=,

∴∠CBG=,

∴△BCG为等腰直角三角形,

∴GC=CB=4,

∴DG=CD−CG=7−4=3.

故选:C.【点睛】本题考查等腰直角三角形的性质,解题的关键是得到GC=CB=4.10、C【解析】

根据正比例函数的定义逐一判断即可.【详解】A.不符合y=kx(k为常数且k≠0),故本选项错误;B.是一次函数但不是正比例函数,故本选项错误;C.是正比例函数,故本选项正确;D.自变量x的次数是2,不符合y=kx(k为常数且k≠0),故本选项错误;故选:C.【点睛】本题考查了正比例函数的定义,掌握正比例函数的定义是解题的关键.二、填空题(每小题3分,共24分)11、【解析】

不等式kx+b-(x+a)>0的解集是一次函数y1=kx+b在y2=x+a的图象上方的部分对应的x的取值范围,据此即可解答.【详解】解:不等式的解集是.故答案为:.【点睛】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.12、1【解析】

根据三角形中位线定理依次可求得第二个三角形和第三个三角形的周长,可找出规律,进而可求得第6个三角形的周长.【详解】如图,、F分别为AB、AC的中点,,同理可得,,,即的周长的周长,第二个三角形的周长是原三角形周长的,同理可得的周长的周长的周长的周长,第三个三角形的周长是原三角形周长的,第六个三角形的周长是原三角形周长的,原三角形的三边长为30,48,50,原三角形的周长为118,第一个新三角形的周长为64,第六个三角形的周长,故答案为:1.【点睛】本题考查三角形中位线定理,掌握三角形中位线平行第三边且等于第三边的一半是解题的关键.13、【解析】

利用判别式的意义得到,然后解不等式即可.【详解】解:根据题意得:,解得:,故答案为:【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.14、x>1【解析】试题解析:由题意得:>0,∵-6<0,∴1-x<0,∴x>1.15、1【解析】

∵骑车的学生所占的百分比是×100%=35%,∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若该校共有学生1500人,则据此估计步行的有1500×40%=1(人),故答案为1.16、x>1【解析】

观察函数图象得到即可.【详解】解:由图象可得:当x>1时,kx+b>2,所以不等式kx+b>2的解集为x>1,故答案为:x>1.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.17、-1【解析】

设方程x2+mx-1=0的两根为x1、x2,根据根与系数的关系可得出x1•x2=﹣1,结合x1=1即可求出x2,此题得解.【详解】解:设方程x2+mx-1=0的两根为x1、x2,则:x1•x2=﹣1.∵x1=1,∴x2=﹣1.故答案为:﹣1.【点睛】本题考查了根与系数的关系,熟练掌握两根之积等于是解题的关键.18、45【解析】

根据三角形中位线定理易证△FPE是等腰三角形,然后根据平行线的性质和三角形外角的性质求出∠FPE=90°即可.【详解】解:∵是的中点,、分别是、的中点,∴EP∥AD,EP=AD,FP∥BC,FP=BC,∵AD=BC,∴EP=FP,∴△FPE是等腰三角形,∵,∴∠PEB+∠ABD+∠DBC=90°,∴∠FPE=∠DPE+∠DPF=∠PEB+∠ABD+∠DBC=90°,∴,故答案为:45.【点睛】本题考查了三角形中位线定理,等腰三角形的判定和性质,平行线的性质以及三角形外角的性质,根据三角形中位线定理证得△FPE是等腰三角形是解题关键.三、解答题(共66分)19、(1)20;(2),;(3)即,的实际意义为出发1小时后汽车和摩托车在距离地的地点相遇.(或距离地).【解析】

(1)因为汽车和摩托车分别从A,B两地去同一城市,从y轴上可看出A,B两地相距20km;(2)根据图象可知,摩托车4小时行驶160千米,汽车3小时行驶180千米,利用速度=路程÷时间即可分别求出摩托车和汽车的行驶速度;(3)分别求出摩托车和汽车离A地的路程y(km)随时间x(h)变化的函数解析式,再将它们联立组成方程组,解方程组得到点P的坐标,然后指出点P的实际意义.【详解】解:(1)由图象可知,A,B两地相距20km.故填:20;(2)根据图像汽车的速度为摩托车的速度为(3)设汽车行驶图像对应的一次函数的表达式为.根据题意,把已知的两点坐标和代入,解得,.这个一次函数表达式为同理解得摩托车对应的一次函数的表达式为由题意解方程组得,即,的实际意义为出发1小时后汽车和摩托车在距离地的地点相遇.(或距离地)【点睛】本题考查了一次函数的应用,一次函数解析式的确定,路程、速度与时间关系的应用,坐标确定位置,两直线的交点坐标求法,以及函数图象的读图能力.要理解函数图象所代表的实际意义是什么才能从中获取准确的信息.20、(1)1,1;(2)S△BDF=S正方形ABCD,证明见解析;(3)2【解析】

(1)根据三角形的面积公式求解;(2)连接CF,通过证明BD∥CF,可得S△BDF=S△BDC=S正方形ABCD;(3)根据S△BDF=S△BDC可得S△BCH=S△DFH=,由三角形面积公式可求CH,DH的长,再由三角形面积公式求出EF的长即可.【详解】(1)∵当点E与点D重合时,

∴CE=CD=6,

∵四边形ABCD,四边形CEFG是正方形,

∴DF=CE=AD=AB=6,

∴S△BDF=×DF×AB=1,当点E为CD的中点时,如图,连接CF,∵四边形ABCD和四边形CEFG均为正方形;

∴∠CBD=∠GCF=25°,

∴BD∥CF,

∴S△BDF=S△BDC=S正方形ABCD=×6×6=1,故答案为:1,1.(2)S△BDF=S正方形ABCD,证明:连接CF.∵四边形ABCD和四边形CEFG均为正方形;∴∠CBD=∠GCF=25°,∴BD∥CF,∴S△BDF=S△BDC=S正方形ABCD;(3)由(2)知S△BDF=S△BDC,∴S△BCH=S△DFH=,∴,∴,,∴,∴EF=2,∴正方形CEFG的边长为2.【点睛】本题是四边形综合题,考查了正方形的性质,三角形的面积公式,平行线的性质,灵活运用这些性质进行推理是本题的关键.21、(1);(2)工厂生产甲产品1000吨,乙产品1500吨时,能获得最大利润.【解析】

(1)利润y(元)=生产甲产品的利润+生产乙产品的利润;而生产甲产品的利润=生产1吨甲产品的利润0.3万元×甲产品的吨数x,即0.3x万元,生产乙产品的利润=生产1吨乙产品的利润0.4万元×乙产品的吨数(2500﹣x),即0.4(2500﹣x)万元.(2)由(1)得y是x的一次函数,根据函数的增减性,结合自变量x的取值范围再确定当x取何值时,利润y最大.【详解】(1).(2)由题意得:,解得.又因为,所以.由(1)可知,,所以的值随着的增加而减小.所以当时,取最大值,此时生产乙种产品(吨).答:工厂生产甲产品1000吨,乙产品1500吨,时,能获得最大利润.【点睛】这是一道一次函数和不等式组综合应用题,准确地根据题目中数量之间的关系,求利润y与甲产品生产的吨数x的函数表达式,然后再利用一次函数的增减性和自变量的取值范围,最后确定函数的最值.也是常考内容之一.22、①菜地离小明家1.1千米,小明走到菜地用了15分钟;②小明给菜地浇水用了10分钟;③玉米地离菜地、小明家的距离分别为0.9千米,2千米,小明从玉米地走回家平均速度是0.08千米/分钟.【解析】

①根据函数图象可以直接写出菜地离小明家多远,小明走到菜地用了多少时间;②根据函数图象中的数据可以得到小明给菜地浇水用了多少时间;③根据函数图象中的数据可以得到玉米地离菜地、小明家多远,小明从玉米地走回家平均速度是多少.【详解】①由图象可得,菜地离小明家1.1千米,小明走到菜地用了15分钟;②25-15=10(分钟),即小明给菜地浇水用了10分钟;③2-1.1=0.9(千米)玉米地离菜地、小明家的距离分别为0.9千米,2千米,小明从玉米地走回家平均速度是2÷(80-55)=0.08千米/分钟.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.23、(1)平均数为504;(2)方差为5.8.【解析】

(1)根据算术平均数的定义计算可得;

(2)根据方差的定义计算可得.【详解】(1)平均数:(5+4+5-2+5+2+7+5+3+6)+500=504(2)方差:(1+0+1+36+1+4+9+1+1+4)=5.8【点睛】本题主要考查方差,解题的关键是掌握方差的定义和计算公式.24、(1)a=2,b=10;(2)2;(3).【解析】

(1)利用扇形图以及统计表,即可解决问题;(2)根据平均数的定义计算即可;(3)列表分析即可解决问题.【详解】(1)由题意a=2,b=10%.故答案为2,10%;(2)这所学校平均每班贫困学生人数2(人);(3)根据题意,将两个班级4名学生分别记作A1、A2、B1、B2,列表如下:由上表可知,从这两个班级任选两名学生进行帮扶共有12种等可能结果,其中被选中的两名学生来自同一班级的有4种结果,∴被选中的两名学生来自同一班级的概率为.【点睛】本题考查了条形统计图和扇形统计图、树状图的画法以及规律公式;读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25、(1)见解析;(2)见解析;(3)【解析】

(1)如图1中,作DF⊥BC延长线于点F,垂足为F.证明△ABH≌△DCF(HL),即可解决问题.

(2)如图2中,设∠BAH=α,则∠B=90°−α;设∠ADE=β则∠CED=2∠ADE+2∠BAH=2α+2β.证明∠ECD=∠EDC即可.

(3)延长CM交DA延长线于点N,连接EN,首先证明△ECD为等边三角形,延长PD到K使DK=EQ,证明△EQC≌△DKC(SAS),推出∠DCK=∠ECQ,QC=KC,推出∠PCK=∠DCK+∠PCD=30°=∠PCQ,连接PQ.证明△PQC≌△PKC(SAS)推出PQ=PK,可得PK=PD+DK=PD+EQ=5+2=7,作PT⊥QD于T,∠PDT=60°,∠TPD=30°,作CR⊥ED于R,勾股定理解直角三角形求出RC,RQ即可解决问题.【详解】(1)证明:如图1中,作DF⊥BC延长线于点F,垂足为F.∵AH⊥BC,

∴∠AHB=∠DFC=90°,

∵AD∥BC,

∴∠ADF+∠AFD=180°,

∴∠ADF=180°−90°=90°,

∴四边形AHFD为矩形,

∴AH=DF,

∵AH=DF,AB=CD,

∴△ABH≌△DCF(HL)

∴∠B=∠DCF,

∴AB∥CD.

(2)如图2中,设∠BAH=α,则∠B=90°−α;设∠ADE=β,则∠CED=2∠ADE+2∠BAH=2α+2β.∵AB∥CD,AB=CD,

∴四边形ABCD为平行四边形,

∴∠B=∠ADC=90°−α,

∴∠EDC=∠ADC−∠ADE=90°−α−β,

在△EDC中,∠ECD=180°−∠CED−∠EDC=180°−(90°−α−β)−(2α+2β)=90°−α−β

∴∠EDC=∠ECD,

∴EC=ED.

(3)延长CM交DA延长线于点N,连接EN,∵AD∥BC,

∴∠ANM=∠BCM,

∵∠AMN=∠BMC、AM=MB,

∴△AMN≌△BMC(AAS)

∴AN=BC,

∵四边形ABCD为平行四边形,

∴AD=BC,

∴AD=AN,

∵AD∥BC,

∴∠DAH=∠HAD=90°,

∴EN=ED,

∵ED=EC,

∴EC=DE=EN,

∴∠ADE=∠ANE,∠ECM=∠ENM,

∵∠ADE+∠ECM=30°,

∴∠DEC=∠ADE+∠DNE+∠NCE,

=∠ADE+∠ANE+∠ENC+∠DCN

=2(∠ADE+∠ECM)=2×30°=60°.

∵EC=ED,

∴△ECD为等边三角形,

∴EC=CD,∠DCE=60°,延长PD到K使DK=EQ,

∵PD∥EC,

∴∠PDE=∠DEC=60°,∠KDC=∠ECD=60°,

∴∠KDC=∠DEC,EC=CD,DK=EQ,

∴△EQC≌△DKC(SAS),

∴∠DCK=∠ECQ,QC=KC,

∵∠ECQ+∠PCD=∠ECD−∠PCQ=60°−30°=30°,

∴∠PCK=∠DCK+∠PCD=30°=∠PCQ,

连接PQ.∵PC=PC,∠PCK=∠PCQ,QC=KC,

∴△PQC≌△PKC(SAS)

∴PQ=PK,

∵PK=PD+DK=PD+EQ=5+2=7,

作PT⊥QD于T,∠PDT=60°,∠TPD=30°,

∴TD=PD=,PT==,

在Rt△PQT中,QT=,∴QD=,

∴ED=8+2=10,

∴EC=ED=10,作CR⊥ED于R,∠DEC=60°∠ECR=30°,

∴ER=EC=5,RC=,RQ=5−2=3

在Rt△QRC中,CQ=.【点睛】本题属于四边形综合题考查了平行四边形的判定和性质,全等三角形的判定和性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考压轴题.26、(1)S平行四边形ABCD=48;(2)G(0,11423),见解析;(3)满足条件的点S的坐标为1-733,-2或【解析】

(1)解方程求出A,B两点坐标,在Rt△AOD中,求出OD即可解决问题.(2)首先证明△EHB也是等腰直角三角形,以HE,HB为边构造正方形EHBJ,连接JN,延长JE交OD于Q,作MT⊥OD于T,连接JT.在Rt△DMT中,易知MT=1010DM,根据对称性可知:NH=NJ,推出HN+MM-1010DM=NJ+MN-MT≤JT,推出当JT最小时,HN+MM-1010DM的值最小.如图2中当点M在JQ的延长线上时,HN+MM-1010DM的值最小,此时M(-13,5),作点M关于y轴对称点M′,连接CM′,延长CM′交y轴于点G(3)分五种情形分别画出图形,利用菱形的性质,中点坐标公式等知识一一求解即可.【详解】解:(1)由32x2-23∴A(-2,0),B(1,0);在Rt△ADO

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论