2022-2023学年浙江省宁波市东方中学数学八年级第二学期期末达标检测模拟试题含解析_第1页
2022-2023学年浙江省宁波市东方中学数学八年级第二学期期末达标检测模拟试题含解析_第2页
2022-2023学年浙江省宁波市东方中学数学八年级第二学期期末达标检测模拟试题含解析_第3页
2022-2023学年浙江省宁波市东方中学数学八年级第二学期期末达标检测模拟试题含解析_第4页
2022-2023学年浙江省宁波市东方中学数学八年级第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列化简正确的是()A.12=22 B.-52.下列式子从左至右的变形,是因式分解的是()A. B. C. D.3.若一个多边形的内角和小于其外角和,则这个多边形的边数是()A.3 B.4 C.5 D.64.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A.BD=CE B.AD=AE C.DA=DE D.BE=CD5.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4 B.8 C.6 D.106.如果中不含的一次项,则()A. B. C. D.7.如图,在平行四边形中,是边上的中点,是边上的一动点,将沿所在直线翻折得到,连接,则的最小值为()A. B. C. D.8.小红随机写了一串数“”,数字“”出现的频数是()A.4 B.5 C.6 D.79.以下列各组数为边长能构成直角三角形的是()A.6,12,13 B.3,4,7 C.8,15,16 D.5,12,1310.下列分解因式正确的是A. B.C. D.11.如图,直线y=k1x与直线y=k2x+b相交于点(1,﹣1),则不等式k1x<k2x+b的解集是()A.x>1 B.x<1 C.x>﹣1 D.x<﹣112.矩形一个角的平分线分矩形一边为2cm和3cm两部分,则这个矩形的面积为()A.10cm2 B.15cm2 C.12cm2 D.10cm2或15cm2二、填空题(每题4分,共24分)13.写出一个经过点,且y随x的增大而减小的一次函数的关系式:______.14.不等式4﹣3x>2x﹣6的非负整数解是_____.15.写出一个图象经过点(1,﹣2)的函数的表达式:_____.16.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3,则△ABC的周长是_______.17.若双曲线在第二、四象限,则直线y=kx+2不经过第_____象限。18.一个有进水管与出水管的容器,从某时刻开始的4分内只进水不出水,在随后的若干分内既进水又出水,之后只有出水不进水,每分钟的进水量和出水量是两个常数,容器内的水量(单位:升)与时间(单位:分)之间的关系如图所示,则进水速度是______升/分,出水速度是______升/分,的值为______.三、解答题(共78分)19.(8分)要从甲、乙两名同学中选出一名,代表班级参加射击比赛.现将甲、乙两名同学参加射击训练的成绩绘制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩(环)中位数(环)众数(环)方差()甲771.2乙7.54.2(1)分别求表格中、、的值.(2)如果其他参赛选手的射击成绩都在7环左右,应该选______队员参赛更适合;如果其他参赛选手的射击成绩都在8环左右,应该选______队员参赛更适合.20.(8分)省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):

第一次

第二次

第三次

第四次

第五次

第六次

10

8

9

8

10

9

10

7

10

10

9

8

(1)根据表格中的数据,计算出甲的平均成绩是环,乙的平均成绩是环;(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.(计算方差的公式:s2=[])21.(8分)某公司第一季度花费3000万元向海外购进A型芯片若干条,后来,受国际关系影响,第二季度A型芯片的单价涨了10元/条,该公司在第二季度花费同样的钱数购买A型芯片的数量是第一季度的80%,求在第二季度购买时A型芯片的单价。22.(10分)解下列方程:(1)(2)23.(10分)在中,,,点是的中点,点是射线上一点,于点,且,连接,作于点,交直线于点.(1)如图(1),当点在线段上时,判断和的数量关系,并加以证明;(2)如图(2),当点在线段的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当和面积相等时,点与点之间的距离;如果不成立,请说明理由.24.(10分)某学校数学兴趣小组在探究一次函数性质时得到下面正确结论:对于两个一次函数y=k1x+b1和y=k2x+b2,若两个一次函数的图象平行,则k1=k2且b1≠b2;若两个一次函数的图象垂直,则k1•k2=﹣1.请你直接利用以上知识解答下面问题:如图,在平面直角坐标系中,已知点A(0,8),B(6,0),P(6,4).(1)把直线AB向右平移使它经过点P,如果平移后的直线交y轴于点A′,交x轴于点B′,求直线A′B′的解析式;(2)过点P作直线PD⊥AB,垂足为点D,按要求画出直线PD并求出点D的坐标;25.(12分)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件.26.甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填写下表:平均数

众数

中位数

方差

8

8

0.4

9

3.2

(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差.(填“变大”、“变小”或“不变”).

参考答案一、选择题(每题4分,共48分)1、A【解析】

根据二次根式的性质以及合并同类二次根式法则,一一化简即可.【详解】A.正确12B.错误(-5)2C.错误.8D.错误.12=2故选A.【点睛】此题考查二次根式的加减法,二次根式的性质与化简,解题关键在于掌握运算法则.2、C【解析】

根据因式分解的意义进行判断即可.【详解】因式分解是指将一个多项式化为几个整式的积的形式.A.,结果是单项式乘以单项式,不是因式分解,故选项A错误;B.,结果应为整式因式,故选项B错误;C.,正确;D.是整式的乘法运算,不是因式分解,故选项D错误.故选:C.【点睛】本题考查了因式分解的意义,解题的关键是正确理解因式分解的意义,涉及完全平方公式,本题属于基础题型.3、A【解析】试题分析:∵多边形的外角和是360度,多边形的内角和等于它的外角和,则内角和是360度,∴这个多边形是四边形.故选B.考点:多边形内角与外角.4、C【解析】

根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.【详解】解:A、添加BD=CE,可以利用“边角边”证明△ABD和△ACE全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误;B、添加AD=AE,根据等边对等角可得∠ADE=∠AED,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB=∠EAC,故本选项错误;C、添加DA=DE无法求出∠DAB=∠EAC,故本选项正确;D、添加BE=CD可以利用“边角边”证明△ABE和△ACD全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误.故选C.5、B【解析】

解:设AG与BF交点为O,∵AB=AF,AG平分∠BAD,AO=AO,∴可证△ABO≌△AFO,∴BO=FO=3,∠AOB=∠AOF=90º,AB=5,∴AO=4,∵AF∥BE,∴可证△AOF≌△EOB,AO=EO,∴AE=2AO=8,故选B.【点睛】本题考查角平分线的作图原理和平行四边形的性质.6、A【解析】

利用多项式乘多项式法则计算,根据结果不含x的一次项求出m的值即可.【详解】解:原式=x2+(m-5)x-5m,

由结果中不含x的一次项,得到m-5=0,

解得:m=5,

故选:A【点睛】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.7、C【解析】

如图,先作辅助线,首先根据垂直条件,求出线段ME、DE长度,然后运用勾股定理求出DE的长度,再根据翻折的性质,当折线,与线段CE重合时,线段长度最短,可以求出最小值.【详解】如图,连接EC,过点E作EMCD交CD的延长线于点M.四边形ABCD是平行四边形,E为AD的中点,又,根据勾股定理得:根据翻折的性质,可得,当折线,与线段CE重合时,线段长度最短,此时=.【点睛】本题是平行四边形翻折问题,主要考查直角三角形勾股定理,根据题意作出辅助线是解题的关键.8、D【解析】

根据频数的概念:频数是表示一组数据中符合条件的对象出现的次数.【详解】∵一串数“”中,数字“3”出现了1次,∴数字“3”出现的频数为1.故选D.【点睛】此题考查频数与频率,解题关键在于掌握其概念9、D【解析】解:A.62+122≠132,不能构成直角三角形.故选项错误;B.32+42≠72,不能构成直角三角形.故选项错误;C.82+152≠162,不能构成直角三角形.故选项错误;D.52+122=132,能构成直角三角形.故选项正确.故选D.10、C【解析】

根据因式分解的方法(提公因式法,运用公式法),逐个进行分析即可.【详解】A.,分解因式不正确;B.,分解因式不正确;C.,分解因式正确;D.2,分解因式不正确.故选:C【点睛】本题考核知识点:因式分解.解题关键点:掌握因式分解的方法.11、A【解析】

由图象得到直线y=k1x与直线y=k2x+b相交于点(1,﹣1),观察直线y=k1x落在直线y=k2x+b的下方对应的x的取值即为所求.【详解】.解:∵直线y=k1x与直线y=k2x+b相交于点(1,﹣1),∴当x>1时,k1x<k2x+b,即k1x<k2x+b的解集为x>1,故选:A.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.12、D【解析】

根据矩形性质得出AB=CD,AD=BC,AD∥BC,由平行线的性质,以及角平分线的定义,即可证得∠ABE=∠AEB,利用等边对等角可以证得AB=AE,然后分AE=1cm,DE=3cm和AE=3cm,DE=1cm两种情况即可求得矩形的边长,从而求解.【详解】解:∵四边形ABCD是矩形,

∴AB=CD,AD=BC,AD∥BC,

∴∠AEB=∠CBE,

∵BE平分∠ABC,

∴∠ABE=∠CBE,

∴∠AEB=∠ABE,

∴AB=AE,当AE=1cm,DE=3cm时,AD=BC=5cm,AB=CD=AE=1cm.

∴矩形ABCD的面积是:1×5=10cm1;

当AE=3cm,DE=1cm时,AD=BC=5cm,AB=CD=AE=3cm,

∴矩形ABCD的面积是:5×3=15cm1.

故矩形的面积是:10cm1或15cm1.

故选:D.【点睛】本题考查矩形的性质以及等腰三角形的判定与性质.注意掌握数形结合思想与分类讨论思想的应用.二、填空题(每题4分,共24分)13、y=-x-1【解析】

可设,由增减性可取,再把点的坐标代入可求得答案.【详解】设一次函数解析式为,随的增大而减小,,故可取,解析式为,函数图象过点,,解得,.故答案为:(注:答案不唯一,只需满足,且经过的一次函数即可).【点睛】本题有要考查一次函数的性质,掌握“在中,当时随的增大而增大,当时随的增大而减小”是解题的关键.14、0,2【解析】

求出不等式2x+2>3x﹣2的解集,再求其非负整数解.【详解】解:移项得,﹣2x﹣3x>﹣6﹣4,合并同类项得,﹣5x>﹣20,系数化为2得,x<2.故其非负整数解为:0,2.【点睛】本题考查了一元一次不等式的整数解,解答此题不仅要明确不等式的解法,还要知道非负整数的定义.解答时尤其要注意,系数为负数时,要根据不等式的性质3,将不等号的方向改变.15、【解析】

设y=kx,把点(1,﹣2)代入即可(答案不唯一).【详解】设y=kx,把点(1,﹣2)代入,得k=-2,∴(答案不唯一).故答案为:.【点睛】本题考查了待定系数法求一次函数解析式,利用待定系数法求函数解析式的一般步骤:①先设出函数解析式的一般形式,如求一次函数的解析式时,先设y=kx+b(k≠0);②将已知点的坐标代入所设的解析式,得到关于待定系数的方程或方程组;③解方程或方程组,求出待定系数的值,进而写出函数解析式.16、41【解析】

证明△ABN≌△ADN,求得AD=AB=10,BN=DN,继而可和CD长,结合M为BC的中点判断MN是△BDC的中位线,从而得出CD长,再根据三角形周长公式进行计算即可得.【详解】在△ABN和△ADN中,,∴△ABN≌△ADN,∴BN=DN,AD=AB=10,又∵点M是BC中点,∴MN是△BDC的中位线,∴CD=2MN=6,故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41,故答案为:41.【点睛】本题考查了全等三角形的判定与性质,三角形的中位线定理,等腰三角形的判定等,注意培养自己的敏感性,一般出现高、角平分线重合的情况,都需要找到等腰三角形.17、三【解析】分析:首先根据反比例函数的图像得出k的取值范围,然后得出直线所经过的象限.详解:∵反比例函数在二、四象限,∴k<0,∴y=kx+2经过一、二、四象限,即不经过第三象限.点睛:本题主要考查的是一次函数和反比例函数的图像,属于基础题型.对于反比例函数,当k>0时,函数经过一、三象限,当k<0时,函数经过二、四象限;对于一次函数y=kx+b,当k>0,b>0时,函数经过一、二、三象限;当k>0,b<0时,函数经过一、三、四象限;当k<0,b>0时,函数经过一、二、四象限;当k<0,b<0时,函数经过二、三、四象限.18、53.751【解析】

首先根据图象中的数据可求出进水管以及出水管的进出水速度,进而利用容器内的水量列出方程求出即可.【详解】解:由图象可得出:

进水速度为:20÷4=5(升/分钟),

出水速度为:5-(30-20)÷(12-4)=3.75(升/分钟),

(a-4)×(5-3.75)+20=(24-a)×3.75

解得:a=1.故答案为:5;3.75;1【点睛】此题主要考查了一次函数的应用以及一元一次方程的应用等知识,利用图象得出进出水管的速度是解题关键.三、解答题(共78分)19、(1)a=1,b=1,c=8;(2)甲,乙【解析】

(1)首先根据统计图中的信息,可得出乙的平均成绩a和众数c;根据统计图,将甲的成绩从小到大重新排列,即可得出中位数b;(2)根据甲乙的中位数、众数和方差,可以判定参赛情况.【详解】(1)a=×(3+6+4+8×3+1×2+9+10)=1.∵甲射击的成绩从小到大从新排列为:5、6、6、1、1、1、1、8、8、9,∴b=1.c=8.(2)甲的方差较大,说明甲的成绩波动较大,而且甲的成绩众数为1,故如果其他参赛选手的射击成绩都在1环左右,应该选甲参赛更适合;乙的中位数和众数都接近8,故如果其他参赛选手的射击成绩都在8环左右,应该选乙参赛更适合.【点睛】此题主要考查根据统计图获取信息,熟练掌握,即可解题.20、解:(1)1;1.(2)s2甲=;s2乙=.(3)推荐甲参加比赛更合适.【解析】

解:(1)1;1.(2)s2甲===;s2乙===.(3)推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.21、在第二季度购买时A型芯片的单价为50元.【解析】

依据题目找到数量关系:第一季度购买时A型芯片的数量第二季度购买时A型芯片的数量,列出方程,解方程即可。【详解】解:设在第二季度购买时A型芯片的单价为x元,依题意可得:解得:经检验可知是原分式方程的解。答:在第二季度购买时A型芯片的单价为50元.【点睛】本题考查了分式方程的应用,找到数量关系列出方程是解题的关键.22、(1),;(2),【解析】

(1)把-2移到方程的右边,方程两边同时加上4,把左边配方,两边同时开方即可求出方程的解;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】(1)∴,(2)∴,【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键,注意:解一元二次方程的方法有因式分解法、公式法、配方法、直接开平方法.23、(1),证明见解析;(2)依然成立,点与点之间的距离为.理由见解析.【解析】

(1)做辅助线,通过已知条件证得与是等腰直角三角形.证出,利用全等的性质即可得到.(2)设AH,DF交于点G,可根据ASA证明△FCE≌△HFG,从而得到,当和均为等腰直角三角形当他们面积相等时,.利用勾股定理可以求DE、CE的长,即可求出CE的长,即可求得点与点之间的距离.【详解】(1)证明:延长交于点∵在中,,,∴∵于点,且,∴,与是等腰直角三角形.∴,,,∴,∵点是的中点,∴,∴∴∵于点,∴,∴∴∴∴;(2)依然成立理由:设AH,DF交于点G,由题意可得出:DF=DE,∴∠DFE=∠DEF=45°,∵AC=BC,∴∠A=∠CBA=45°,∵DF∥BC,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D为AC的中点,DF∥BC,∴DG=BC,DC=AC,∴DG=DC,∴EC=GF,∵∠DFC=∠FCB,∴∠GFH=∠FCE,在△FCE和△HFG中,∴△FCE≌△HFG(ASA),∴HF=FC.由(1)可知和均为等腰直角三角形当他们面积相等时,.∴∴∴点与点之间的距离为.【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的性质以及勾股定理,学会利用全等和等腰三角形的性质,借助勾股定理解决问题.24、(1)y=-43x+8,y=-4【解析】

(1)已知A、B两点的坐标,可用待定系数法求出直线AB的解析式,根据若两个一次函数的图象平行,则k1=k2且b1≠b2,设出直线A′(2)根据直线AB的解析式设出设直线PD解析式为y=34x+n代入P(6,【详解】解:(1)设直线AB的解析式为y=kx+b

根据题意,得:6k+b=0解之,得k=-43b=8

∴直线AB的解析式为y=-43x+8

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论