2023年人教版初中八年级数学【学案】 三角形的中位线_第1页
2023年人教版初中八年级数学【学案】 三角形的中位线_第2页
2023年人教版初中八年级数学【学案】 三角形的中位线_第3页
2023年人教版初中八年级数学【学案】 三角形的中位线_第4页
2023年人教版初中八年级数学【学案】 三角形的中位线_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年人教版初中八年级数学《三角形的中位线》学案学习目标:理解三角形中位线的概念,掌握它的性质。学习重点:掌握和运用三角形中位线的性质.学习难点:三角形中位线性质的证明(辅助线的添加方法).学习过程:一、复习提问1.什么叫中心对称图形?中心对称图形有什么性质?2.平行四边形是中心对称图形吗?如果是,对称中心在哪里?二、问题导入:五一放假的时候,小明和小亮去乡下老家玩,发现村头有一水塘,于是小许拿一根皮尺去测量这水塘两端点A、B之间的距离.可当他将皮尺的一端系在A处时发现皮尺短了,拉不到B处,怎样才能既测出AB间的距离?小明和小亮商量了一会,他们不愧是数学高手,有办法了?你知道是什么办法吗?学生自习教材内容,得出三角形中位线的定义:连接三角形两边中点的线段叫做三角形的中位线。自主探究一:1、任意画一个三角形并画出它的一条中位线2、量出中位线和第三边的长度3、量出所画图形中一组同位角的度数4、你发现了什么?探究交流:探究点拨:从数量和位置两方面来考察三角形的中位线与第三边的关系。猜想得出三角形的中位线平行与第三边,且等于第三边的一半.自主探究二:探究一的证明D、E、分别为△ABC边AB、AC的中点,求证:DE∥BC且DE=BC.探究交流:探究点拨所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.方法1:如图(1),延长DE到F,使EF=DE,连接CF,由△ADE≌△CFE,可得AD∥FC,且AD=FC,因此有BD∥FC,BD=FC,所以四边形BCFD是平行四边形.所以DF∥BC,DF=BC,因为DE=DF,所以DE∥BC且DE=BC.(也可以过点C作CF∥AB交DE的延长线于F点,证明方法与上面大体相同)从而得出三角形中位线定理:三角形的中位线平行与第三边,且等于第三边的一半.三、实践应用:例1.已知:如图(2),在四边形ABCD中,E、F、G、H分别是 AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.学生解答交流汇报老师点拨规范解答思路点拨:因为已知点E、F、G、H分别是线段的中点,可以设法应用三角形中位线性质找到四边形EFGH的边之间的关系.由于四边形的对角线可以把四边形分成两个三角形,所以添加辅助线,连接AC或BD,构造“三角形中位线”的基本图形后,此题便可得证.证明:连结AC(图(2)),△DAC中,∵AH=HD,CG=GD,∴HG∥AC,HG=AC(三角形中位线性质).同理EF∥AC,EF=AC.∴HG∥EF,且HG=EF.∴四边形EFGH是平行四边形.此题可得结论:顺次连结四边形四条边的中点,所得的四边形是平行四边形.四、课堂小结:1.什么叫做三角形的中位线?一个三角形有几条中位线?2.三角形中位线定理是什么?五、达标检测:必做题1.(填空)如图,A、B两点被池塘隔开,在AB外选一点C,连结AC和BC,并分别找出AC和BC的中点M、N,如果测得MN=20m,那么A、B两点的距离是m,理由是.2.(填空)一个三角形的周长是135cm,过三角形各顶点作对边的平行线,则这三条平行线所组成的三角形的周长是cm.3.(填空)已知:△ABC中,点D、E、F分别是△ABC三边的中点,如果△DEF的周长是12cm,那么△ABC的周长是cm.4.△ABC中,D、E分别是AB、AC的中点,∠A=50°,∠B=70°,则∠AED=_____.5.在四边形ABCD中,E、F、G、H分别为AB、BC、CD、DA的中点,若AC=3,BD=8,则四边形EFGH的周长是。6.如图,△ABC中,D、E、F分别是AB、AC、BC的中点,(1)若EF=5cm,则AB=cm;若BC=9cm,则DE=cm;(2)中线AF与DE中位线有什么特殊的关系?证明你的猜想.选作题:A

A

AD

ME

NCB①如果DE=20m,那么A、B两点间的距离是多少?为什么?②如果D、E两点之间还有阻隔,你有什么解决办法?2.已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.参考答案:必做题:1.40,MN为△ABC的中位线2.2703.244.60°

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论