版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.当时,计算()A. B. C. D.2.将直线y=-2x-3怎样平移可以得到直线y=-2x的是()A.向上平移2个单位 B.向上平移3个单位C.向下平移2个单位 D.向下平移3个单位3.如图,在△ABC中,∠C=90°,∠B=15°,AC=3,AB的垂直平分线l交BC于点D,连接AD,则BC的长为()A.12 B.3+3 C.6+3 D.64.▱ABCD中,对角线AC与BD相交于点E,将△ABC沿AC所在直线翻折至△AB′C,若点B的落点记为B′,连接B′D、B′C,其中B′C与AD相交于点G.①△AGC是等腰三角形;②△B′ED是等腰三角形;③△B′GD是等腰三角形;④AC∥B′D;⑤若∠AEB=45°,BD=2,则DB′的长为;其中正确的有()个.A.2 B.3 C.4 D.55.下列手机软件图标中,既是轴对称图形又是中心对称图形的是()A. B. C. D.6.下列一元二次方程没有实数根的是()A. B. C. D.7.下列图形都是由同样大小的▲按一定规律组成的,其中第1个图形中一共有6个▲:第2个图形中一共有9个▲;第3个图形中一共有12个▲;…授此规律排列,则第2019个图形中▲的个数为()A.2022 B.4040 C.6058 D.60608.如图,在平行四边形ABCD中,F,G分别为CD,AD的中点,BF=2,BG=3,,则BC的长度为()A. B. C.2.5 D.9.如图,EF为△ABC的中位线,若AB=6,则EF的长为()A.2 B.3 C.4 D.510.如图,在中,,,则的度数是()A. B. C. D.11.如图,的周长为,对角线、相交于点,点是的中点,,则的周长为()A. B. C. D.12.如图,直线y=x+与y=kx-1相交于点P,点P的纵坐标为,则关于x的不等式x+>kx-1的解集在数轴上表示正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,平行四边形中,点是边上一点,连接,将沿着翻折得,交于点.若,,,则_____.14.一个矩形的长比宽多1cm,面积是,则矩形的长为___________15.如图,在中,D是AB上任意一点,E是BC的中点,过C作,交DE的延长线于F,连BF,CD,若,,,则_________.16.在平面直角坐标系中,直线与轴交于点,与反比例函数在第一象限内的图像相交于点,将直线平移后与反比例函数图像在第一象限内交于点,且的面积为18,则平移后的直线解析式为__________.17.如图,已知点A的坐标为(5,0),直线y=x+b(b≥0)与y轴交于点B,连接AB,∠α=75°,则b的值为_____.18.如图,在等边三角形ABC中,AC=9,点O在AC上,且AO=3,点P是AB上的一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D恰好落在BC上,则AP的长是________.三、解答题(共78分)19.(8分)已知抛物线,与轴交于、,(1)若,时,求线段的长,(2)若,时,求线段的长,(3)若一排与形状相同的抛物线在直角坐标系上如图放置,且每相邻两个的交点均在轴上,,若之间有5个它们的交点,求的取值范围.20.(8分)如图,在平面直角坐标系中,函数的图象经过点A(1,4)和点B,过点A作AC⊥x轴,垂足为点C,过点B作BD⊥y轴,垂足为点D,连结AB、BC、DC、DA,点B的横坐标为a(a>1)
(1)求k的值
(2)若△ABD的面积为4;
①求点B的坐标,
②在平面内存在点E,使得以点A、B、C、E为顶点的四边形是平行四边形,直接写出符合条件的所有点E的坐标.21.(8分)如图,在平行四边形ABCD中,E、F分别是BC、AD上的点,且AE∥CF,求证:AE=CF22.(10分)学校为了更新体育器材,计划购买足球和篮球共100个,经市场调查:购买2个足球和5个篮球共需600元;购买3个足球和1个篮球共需380元。(1)请分别求出足球和篮球的单价;(2)学校去采购时恰逢商场做促销活动,所有商品打九折,并且学校要求购买足球的数量不少于篮球数量的3倍,设购买足球a个,购买费用W元。①写出W关于a的函数关系式,②设计一种实际购买费用最少的方案,并求出最少费用。23.(10分)今年,我区某中学响应“足球进校园”的号召,开设了“足球大课间”活动.现需要购进100个某品牌的足球供学生使用.经调查,该品牌足球2017年单价为200元,2019年单价为162元.(1)求2017年到2019年该品牌足球单价平均每年降低的百分率;(2)选购期间发现该品牌足球在标价162元的基础上,两个文体用品商店有下列不同的促销方案,试问去哪个商店买足球更优惠?24.(10分)问题:将边长为n(n≥2)的正三角形的三条边分别n等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有1+3=2边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有1+3+5=32=9探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为n(n≥2)的正三角形的三条边分别n等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.25.(12分)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.26.如图,是的直径,直线与相切于点,且与的延长线交于点,点是的中点.(1)求证:;(2)若,的半径为3,一只蚂蚁从点出发,沿着爬回至点,求蚂蚁爬过的路程,,结果保留一位小数).
参考答案一、选择题(每题4分,共48分)1、C【解析】
先确定a的取值范围,再逐项化简,然后合并即可.【详解】∵,ab3≥0,∴a≤0.∴==.故选C.【点睛】本题考查了二次根式的加减运算,应先把各个二次根式化成最简二次根式,然后再合并同类二次根式即可.同类二次根式的合并方法是把系数相加减,被开方式和根号不变.2、B【解析】
根据上加下减,左加右减的平移原则,即可得出答案.【详解】解:根据上加下减的平移原则,直线y=-2x可以看作是由直线y=-2x-3向上平移3个单位得到的;
故选B.【点睛】本题考查一次函数图象与几何变换,属于基础题,关键是掌握上加下减,左加右减的平移原则.3、C【解析】
利用垂直平分线的性质可得∠DAB=∠B=15°,可得∠ADC=30°,易得AD=BD=2AC,CD=AC,然后根据BC=BD+CD可得出结果.【详解】解:∵AB的垂直平分线l交BC于点D,∴AD=DB,∴∠B=∠DAB=15°,∴∠ADC=30°,∵∠C=90°,AC=3,∴AD=6=BD,CD=3.∴BC=BD+CD=6+3.故选:C.【点睛】本题主要考查了垂直平分线的性质、含30°直角三角形的性质以及勾股定理,综合运用各性质定理是解答此题的关键.4、D【解析】
利用平行四边形的性质、翻折不变性一一判断即可解决问题;【详解】解:∵四边形ABCD是平行四边形,∴BE=DE,AD∥BC,AD=BC,∴∠GAC=∠ACB,由翻折可知:BE=EB′=DE,∠ACB=∠ACG,CB=CB′,∴∠GAC=∠ACG,∴△AGC,△B′ED是等腰三角形,故①②正确,∵AB′=AB=DC,CB′=AD,DB′=B′D,∴△ADB′≌△CB′D,∴∠ADB′=∠CB′D,∴GD=GB′,∴△B′GD是等腰三角形,故③正确,∵∠GAC=∠GCA,∠AGC=∠DGB′,∴∠GAC=∠GDB′,∴AC∥DB′,故④正确.∵∠AEB=45°,BD=2,∴∠BEB′=∠DEB′=90°,∵DE=EB′=1,∴DB′=,故⑤正确.故选:D.【点睛】本题考查翻折变换、等腰三角形的性质、平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5、B【解析】试题分析:A.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故A选项错误;B.∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故B选项正确.C.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故C选项错误;D.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故B选项错误.考点:1.中心对称图形;2.轴对称图形.6、B【解析】
通过计算方程根的判别式,满足即可得到结论.【详解】解:A、,方程有两个相等的实数根,故本选项错误;B、,方程没有实数根,故本选项正确;C、,方程有两个不相等的实数根,故本选项错误;D、,方程有两个不相等的实数根,故本选项错误;故答案为B.【点睛】本题考查了根的判别式,熟练掌握一元二次方程的根与判别式的关系是解题的关键.(1)当,方程有两个不相等的两个实数根;(2)当,方程有两个相等的两个实数根;(3)当时,方程无实数根.7、D【解析】
仔细观察图形,找到图形中圆形个数的通项公式,然后代入n=100求解即可.【详解】解:观察图形得:
第1个图形有3+3×1=6个三角形,
第2个图形有3+3×2=9个三角形,
第3个图形有3+3×3=12个三角形,
…
第n个图形有3+3n=3(n+1)个三角形,
当n=2019时,3×(2019+1)=6060,
故选D.【点睛】本题考查了图形的变化类问题,解题的关键是仔细的读题并找到图形变化的规律,难度不大.8、A【解析】
延长AD、BF交于E,过点E作EM⊥BG,根据F是中点得到△CBF≌△DEF,得到BE=2BF=4,根据得到BM=BE=2,ME=2,故MG=1,再根据勾股定理求出EG的长,再得到DE的长即可求解.【详解】延长AD、BF交于E,∵F是中点,∴CF=DF,又AD∥BC,∴∠CBF=∠DEF,又∠CFB=∠DFE,∴△CBF≌△DEF,∴BE=2BF=4,过点E作EM⊥BG,∵,∴∠BEM=30°,∴BM=BE=2,ME=2,∴MG=BG-BM=1,在Rt△EMG中,EG==∵G为AD中点,∴DG=AD=DE,∴DE==,故BC=,故选A.【点睛】此题主要考查平行四边形的线段求解,解题的关键是熟知全等三角形的判定及勾股定理的运用.9、B【解析】
根据三角形的中位线的性质即可得到结论.【详解】∵EF为△ABC的中位线,若AB=6,∴EF=AB=3,故选B.【点睛】本题考查了三角形的中位线的性质,熟练掌握三角形中位线定理是解题的关键.10、B【解析】
在平行四边形ABCD中可求出∠C=∠A=75°,利用两直线平行,同旁内角互补可以求∠ABD的度数.【详解】在中,△BCD是等腰三角形∠C=∠DBC=75°又∠C+∠ABC=180°即∠C+∠DBC+∠ABD=180°∠ABD=180°-∠C-∠DBC=180°-75°-75°=30°【点睛】此题考查了平行四边形的性质、三角形的内角和定义、等腰三角形的性质.11、A【解析】
利用平行四边形的性质,三角形中位线定理即可解决问题【详解】解:平行四边形的周长为18,,,,∴,,,的周长为,故选.【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形中位线定理,属于中考常考题型.12、A【解析】
先把代入,得出,再观察函数图象得到当时,直线都在直线的上方,即不等式的解集为,然后用数轴表示解集.【详解】把代入,得,解得.当时,,所以关于x的不等式的解集为,用数轴表示为:.故选A.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数的值大于或小于的自变量x的取值范围;从函数图象的角度看,就是确定直线在x轴上或下方部分所有的点的横坐标所构成的集合.二、填空题(每题4分,共24分)13、【解析】
通过证明△AB'F∽△DEF,可得,可求AB'的长,由折叠的性质可得AB=AB'=.【详解】解:∵AB′∥ED∴△AB'F∽△DEF∴∴∴AB'=∵将△ABE沿着AE翻折得△AB′E,∴AB=AB'=,故答案为:.【点睛】本题考查了翻折变换,平行四边形的性质,相似三角形的判定和性质,利用相似三角形的性质求线段的长度是本题的关键.14、1【解析】
设宽为xcm,根据矩形的面积=长×宽列出方程解答即可.【详解】解:设宽为xcm,依题意得:
x(x+1)=132,
整理,得
(x+1)(x-11)=0,
解得x1=-1(舍去),x2=11,
则x+1=1.
答:矩形的长是1cm.【点睛】本题考查了根据实际问题列出一元二次方程的知识,列一元二次方程的关键是找到实际问题中的相等关系.15、1【解析】
证明CF∥DB,CF=DB,可得四边形CDBF是平行四边形,作EM⊥DB于点M,解直角三角形即可.【详解】解:∵CF∥AB,
∴∠ECF=∠EBD.
∵E是BC中点,
∴CE=BE.
∵∠CEF=∠BED,
∴△CEF≌△BED(ASA).
∴CF=BD.
∴四边形CDBF是平行四边形.
作EM⊥DB于点M,
∵四边形CDBF是平行四边形,,
∴BE=,DF=2DE,
在Rt△EMB中,EM2+BM2=BE2且EM=BM
∴EM=1,在Rt△EMD中,
∵∠EDM=30°,
∴DE=2EM=2,
∴DF=2DE=1.
故答案为:1.【点睛】本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,16、y=x+1或y=x﹣2【解析】
设反比例解析式为y=,将B坐标代入直线y=x﹣2中求出m的值,确定出B坐标,将B坐标代入反比例解析式中求出k的值,即可确定出反比例解析式;当直线向上平移时,过C作CD垂直于y轴,过B作BE垂直于y轴,设y=x﹣2平移后解析式为y=x+b,C坐标为(a,a+b),△ABC面积=梯形BEDC面积+△ABE面积﹣△ACD面积,由已知△ABC面积列出关系式,将C坐标代入反比例解析式中列出关系式,两关系式联立求出b的值,即可确定出平移后直线的解析式;当直线向下平移时,假设平移后与反比例函数图像在第一象限内交于点C',若平移的距离和向上平移的距离相同,利用△ABC与△ABC'的同底等高,便能得到且它们的面积也相同,皆为18,符合题意,进而得到结果.【详解】解:将B坐标代入直线y=x﹣2中得:m﹣2=2,解得:m=4,则B(4,2),即BE=4,OE=2,设反比例解析式为y=(k≠0),将B(4,2)代入反比例解析式得:k=8,则反比例解析式为y=;设平移后直线解析式为y=x+b,C(a,a+b),对于直线y=x﹣2,令x=0求出y=﹣2,得到OA=2,过C作CD⊥y轴,过B作BE⊥y轴,将C坐标代入反比例解析式得:a(a+b)=8,∵S△ABC=S梯形BCDE+S△ABE﹣S△ACD=18,∴×(a+4)×(a+b﹣2)+×(2+2)×4﹣×a×(a+b+2)=18,解得:b=1,则平移后直线解析式为y=x+1.此时直线y=x+1是由y=x﹣2向上平移9个单位得到的,同理,当直线向下平移9个单位时,直线解析式为y=x﹣2﹣9,即:y=x﹣2设此时直线与反比例函数图像在第一象限内交于点C',则此时△ABC与△ABC'是同底等高的两个三角形,所以△ABC'也是18,符合题意,故答案是:y=x+1或y=x﹣2.【点睛】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:一次函数与坐标轴的交点,待定系数法求函数解析式,三角形、梯形的面积求法,以及坐标与图形性质,熟练掌握待定系数法是解本题的关键.17、【解析】
设直线与x轴交于点C,由直线BC的解析式可得出结合可得出,通过解含30度角的直角三角形即可得出b值.【详解】设直线与x轴交于点C,如图所示:∵直线BC的解析式为y=x+b,∴∵∴当x=0时,y=x+b=b.在Rt△ABO中,OB=b,OA=5,∴AB=2b,∴∴故答案为:【点睛】考查待定系数法求一次函数解析式,三角形的外角性质,含角的直角三角形的性质,勾股定理等,综合性比较强,根据直线解析式得到是解题的关键.18、6【解析】
由题意得,∵∠A+∠APO=∠POD+∠COD,∠A=∠POD=60°,∴∠APO=∠COD,在△AOP与△CDO中,,∴△AOP≌△CDO(AAS),∴AP=CO=AC﹣AO=9﹣3=6.故答案为6.三、解答题(共78分)19、(1)6;(2)6;(3)【解析】
(1)将,代入,求出与x轴两个交点的的横坐标,即可确定AB的长.(2)将,代入,化简得y,令y=0,求出与x轴两个交点的的横坐标,即可确定AB的长.(3)令,解得,然后确定AB的长,再根据之间有5个交点,列出不等式,求解不等式即可.【详解】解:(1)∵,,∴,令,得,,∴.(2),时,令,,,∴,∴线段的长为6.(3)令,,,此时的长,∵之间有5个交点,∴,∴.【点睛】本题考查了二次函数与x轴交点及交点间的距离,解题的关键在于认真分析,逐步解答,才会发现解答思路.20、(1)1;(2)①(3,),②(3,);(3,);(3,-)【解析】
(1)由点A的坐标,利用反比例函数图象上点的坐标特征可求出k值;
(2)①设AC,BD交于点M,利用反比例函数图象上点的坐标特征可得出点B的坐标,结合AC⊥x轴,BD⊥y轴可得出BD,AM的长,利用三角形的面积公式结合△ABD的面积为1可求出a的值,进而可得出点B的坐标;
②设点E的坐标为(m,n),分AB为对角线、AC为对角线以及BC为对角线三种情况考虑,利用平行四边形的性质(对角线互相平分)可得出关于m,n的二元一次方程组,解之即可得出点E的坐标.【详解】解:(1)∵函数y=(x>0)的图象经过点A(1,1),
∴k=1×1=1.
(2)①设AC,BD交于点M,如图1所示.
∵点B的横坐标为a(a>1),点B在y=的图象上,
∴点B的坐标为(a,).
∵AC⊥x轴,BD⊥y轴,
∴BD=a,AM=AC-CM=1-.
∵△ABD的面积为1,
∴BD•AM=1,即a(1-)=8,
∴a=3,
∴点B的坐标为(3,)②存在,设点E的坐标为(m,n).
分三种情况考虑,如图2所示.
(i)当AB为对角线时,∵A(1,1),B(3,),C(1,0),
∴,解得:,
∴点E1的坐标为(3,);
(ii)当AC为对角线时,∵A(1,1),B(3,),C(1,0),∴,解得:,∴点E2的坐标为(3,);(iii)当BC为对角线时,∵A(1,1),B(3,),C(1,0),∴,解得:,∴点E2的坐标为(3,-).综上所述:点E的坐标为(3,);(3,);(3,-).【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积以及平行四边形的性质,解题的关键是:(1)根据点的坐标,利用反比例函数图象上点的坐标特征求出k值;(2)①利用三角形的面积公式结合△ABD的面积为1,求出a的值;②分AB为对角线、AC为对角线以及BC为对角线三种情况,利用平行四边形的对角线互相平分求出点E的坐标.21、见解析【解析】
根据一组对边平行且相等的四边形是平行四边形,证明AF=EC,AF∥EC即可.【详解】证明:∵四边形ABCD是平行四边形,
且E、F分别是BC、AD上的点,
∴AF=EC,
又∵四边形ABCD是平行四边形,
∴AD∥BC,即AF∥EC.
∴四边形AFCE是平行四边形,
∴AE=CF.【点睛】本题考查了平行四边形的判断方法,平行四边形可以从边、角、对角线三方面进行判定,在选择判断方法时,要根据题目现有的条件,选择合理的判断方法.22、(1)足球每个100元,篮球每个80元;(2)①W=18a+7200;②足球75个,篮球25个,费用最低,最低费用为8550元【解析】
(1)根据“购买金额=足球数量×足球单价+篮球的数量×篮球单价”,在两种情况下分别列方程,组成方程组,解方程组即可;(2)①设购买足球a个,则购买篮球的数量为(100-a)个,则总费用(W)=足球数量×足球单价×0.9+篮球的数量×篮球单价×0.9,据此列函数式整理化简即可;②
根据购买足球的数量不少于篮球数量的3倍,
且足球的数量不超过总数100,分别列一元一次不等式,组成不等式组,解不等式组求出a的范围;由于W和a的一次函数,k=18>0,W随a增大而增大,随a的减小而减小,所以当a取最小值a时,W值也为最小,从而求出W的最小值,即最低费用.【详解】(1)解:设足球每个x元,篮球每个y元,由题意得解得:答:足球每个100元,篮球每个80元(2)解:①W=100×0.9a+80×0.9(100-a)=18a+7200,答:W关于a的函数关系式为W=18a+7200,②由题意得
,解得:75≤a≤100∵W=18a+7200,W随a的增大而增大,∴a=75时,W最小=18×75+7200=8550元,此时,足球75个,篮球25个,费用最低,最低费用为8550元.【点睛】此题主要考查一次函数的应用,解题的关键是根据题意求出函数关系式,熟知一次函数的图像与性质.23、(1)2017
年到
2019
年该品牌足球单价平均每年降低10%;(2)去B商店买足球更优惠,见解析【解析】
(1)设平均每年降低的百分率为x,根据2017年及2019年该品牌足球的单价,即可得出关于x的一元二次方程,解之取其小于1的值即可得出结论;(2)根据两商城的促销方案,分别求出在两商城购买100个该品牌足球的总费用,比较后即可得出结论.【详解】(1)设平均每年降低的百分率为,根据题意列方程,得.解得:,(不合题意,舍去).答:2017
年到
2019
年该品牌足球单价平均每年降低10%;(2)A商店:162×91=14742(元);B商店:162×0.9×100=1(元).因为14742>1.所以,去B商店买足球更优惠.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)根据2017年及2019年该品牌足球的单价,列出关于x的一元二次方程;(2)根据两商城的促销方案,分别求出在两商城购买100个该品牌足球的总费用.24、探究三:16,6;结论:n²,n(n-1)2【解析】
探究三:模仿探究一、二即可解决问题;结论:由探究一、二、三可得:将边长为n(n≥2)的正三角形的三条边分别n等分,连接各边对应的等分点,边长为1的正三角形共有1+3+5+7+⋅⋅⋅+(2n-1)=n2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44845-2024承压设备低频电磁检测方法
- 2024年度年福建省高校教师资格证之高等教育学通关提分题库(考点梳理)
- 2024年度山西省高校教师资格证之高等教育心理学题库附答案(基础题)
- 江苏开放大学形考任务2024年秋包装设计060712形成性考核作业答案
- 2024年商品信用销售协议
- 合同法总作业及参考答案
- 大理石原料买卖化协议文档
- 2024年规范转供电服务协议模板
- 2024年施工协议监管要点明细
- 2024年木模板工程承包协议样本
- 苏轼生平及创作整理
- 柴油发电机组应急预案
- 语文《猜猜他是谁》教案
- 绘本:让谁先吃好呢
- 宽容待人正确交往中小学生教育主题班会
- 移动通信网络运行维护管理规程
- 龙头股战法优质获奖课件
- 小班幼儿语言活动教案100篇
- 中国青瓷艺术鉴赏智慧树知到答案章节测试2023年丽水学院
- 中广国际总公司-CR2010卫星接收解码器
- 2023年小学数学手抄报比赛活动总结(3篇)
评论
0/150
提交评论