2023届内蒙古通辽市科尔沁区第七中学数学八年级第二学期期末统考模拟试题含解析_第1页
2023届内蒙古通辽市科尔沁区第七中学数学八年级第二学期期末统考模拟试题含解析_第2页
2023届内蒙古通辽市科尔沁区第七中学数学八年级第二学期期末统考模拟试题含解析_第3页
2023届内蒙古通辽市科尔沁区第七中学数学八年级第二学期期末统考模拟试题含解析_第4页
2023届内蒙古通辽市科尔沁区第七中学数学八年级第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB2.不等式3(x-2)≥x+4的解集是(

)A.x≥5 B.x≥3 C.x≤5 D.x≥-53.如图,在▱ABCD中,点E、F分别在边AB和CD上,下列条件不能判定四边形DEBF一定是平行四边形的是()A.AE=CF B.DE=BF C.∠ADE=∠CBF D.∠AED=∠CFB4.芝麻的用途广泛,经测算,一粒芝麻约有0.00000201千克.数据0.00000201用科学记数法表示为()A. B. C. D.5.如图,函数y=kx与y=ax+b的图象交于点P(-4,-2).则不等式kx<ax+b的解集是()A.x<-2 B.x>-2 C.x<-4 D.x>-46.某同学五天内每天完成家庭作业的时间(时)分别为2,3,2,1,2,则对这组数据的下列说法中错误的是()A.平均数是2 B.众数是2 C.中位数是2 D.方差是27.下图是外周边缘为正八边形的木花窗挂件,则这个八边形的每个内角为()A. B. C. D.8.如图所示,在中,分别是的中点,分别交于点.下列命题中不正确的是()A. B.C. D.9.在ΔABC中,∠A,∠B,∠C的对边分别是a,b,c,下列条件中,不能判定ΔABC是直角三角形的是()A.∠A+∠B=90°C.a=1,b=3,c=10 D.10.如图,在矩形ABCD中,E为AD的中点,∠BED的平分线交BC于点F,若AB=3,BC=8,则FC的长度为()A.6 B.5 C.4 D.3二、填空题(每小题3分,共24分)11.已知线段AB=100m,C是线段AB的黄金分割点,则线段AC的长约为。(结果保留一位小数)12.如图,在的两边上分别截取、,使;分别以点、为圆心,长为半径作弧,两弧交于点,连接、.若,四边形的面积为.则的长为______.13.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是______.14.若一次函数y=kx﹣1的图象经过点(﹣2,1),则k的值为_____.15.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=10,BC=16,则EF的长为___________.16.已知点A(,)、B(,)在直线上,且直线经过第一、三、四象限,当时,与的大小关系为____.17.如图,在矩形ABCD中,AD=9cm,AB=3cm,将其折叠,使点D与点B重合,则重叠部分(△BEF)的面积为_________cm2.18.已知关于的方程的一个根是x=-1,则_______.三、解答题(共66分)19.(10分)如图所示的图象反映的过程是:小强星期天从家跑步去体育场,在那里锻炼了一会儿后又走到文具店去买笔,然后步行回家,其中x表示时间,y表示小强离家的距离,根据图象回答下列问题.(1)体育场离小强家有多远?小强从家到体育场用了多长时间?(2)体育场距文具店多远?(3)小强在文具店逗留了多长时间?(4)小强从文具店回家的平均速度是多少?20.(6分)已知三角形ABC中,∠ACB=90°,点D(0,-4),M(4,-4).(1)如图1,若点C与点O重合,A(-2,2)、B(4,4),求△ABC的面积;(2)如图2,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,若∠AOG=55°,求∠CEF的度数;(3)如图3,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,N为AC上一点,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,∠NEC+∠CEF=180°,求证∠NEF=2∠AOG.21.(6分)已知:菱形ABCD的两条对角线AC与BD相交于点O,且AC=6,BD=8,求菱形的周长和面积.22.(8分)某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?23.(8分)化简:()÷并解答:(1)当x=1+时,求原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?24.(8分)如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF,求证:四边形ADCF是菱形.25.(10分)已知:正方形ABCD,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,连接EC,AG.(1)当点E在正方形ABCD内部时,①根据题意,在图1中补全图形;②判断AG与CE的数量关系与位置关系并写出证明思路.(2)当点B,D,G在一条直线时,若AD=4,DG=,求CE的长.(可在备用图中画图)26.(10分)如图,四边形ABCD是正方形,点G是BC上一点,DE⊥AG于点E,BF∥DE且交AG于点F.(1)求证:AE=BF;(2)当∠BAG=30°,且AB=2时,求EF-FG的值.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选C.2、A【解析】

去括号、移项,合并同类项,系数化成1即可.【详解】3(x-2)≥x+43x-6≥x+42x≥10∴x≥5故选A.【点睛】本题考查了解一元一次不等式.注意:解一元一次不等式的步骤是:去分母、去括号、移项、合并同类项、系数化成1.3、B【解析】

根据平行四边形的判定方法一一判断即可;【详解】解:A、由AE=CF,可以推出DF=EB,结合DF∥EB,可得四边形DEBF是平行四边形;B、由DE=BF,不能推出四边形DEBF是平行四边形,有可能是等腰梯形;C、由∠ADE=∠CBF,可以推出△ADE≌△CBF,推出DF=EB,结合DF∥EB,可得四边形DEBF是平行四边形;D、由∠AED=∠CFB,可以推出△ADE≌△CBF,推出DF=EB,结合DF∥EB,可得四边形DEBF是平行四边形;故选:B.【点睛】本题考查平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4、C【解析】

根据科学记数法的概念:科学记数法是一种记数的方法。把一个数表示成a与10的n次幂相乘的形式(1≤|a|<10,n为整数),即可解题.【详解】解:根据科学记数法的记法,可得0.00000201=故答案为C.【点睛】此题主要考查科学记数法,熟练运用,即可解题.5、C【解析】

以交点为分界,结合图象写出不等式kx<ax+b的解集即可.【详解】函数y=kx和y=ax+b的图象相交于点P(-1,-2).由图可知,不等式kx<ax+b的解集为x<-1.故选C.【点睛】此题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.关键是求出A点坐标以及利用数形结合的思想.6、D【解析】

根据众数、中位数、平均数和方差的计算公式分别进行解答,即可得出答案.【详解】解:平均数是:(2+3+2+1+2)÷5=2;数据2出现了3次,次数最多,则众数是2;数据按从小到大排列:1,2,2,2,3,则中位数是2;方差是:[(2﹣2)2+(3﹣2)2+(2﹣2)2+(1﹣2)2+(2﹣2)2]=,则说法中错误的是D;故选D.【点睛】本题考查众数、中位数、平均数和方差,平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量;众数是一组数据中出现次数最多的数.7、D【解析】

根据多边形的内角和公式,列式计算即可得解.【详解】解:这个正八边形每个内角的度数=×(8-2)×180°=135°.故选:D【点睛】本题考查了多边形的内角与外角,熟记多边形的内角和公式是解题的关键.8、A【解析】

证出四边形AMCN是平行四边形,由平行四边形的性质得出选项B正确,由相似三角形的性质得出选项C正确,由平行四边形的面积公式得出选项D正确,即可得出结论.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∠BAD=∠BCD,∵M、N分别是边AB、CD的中点,∴CN=CD,AM=AB,∴CN=AM,∴四边形AMCN是平行四边形,∴AN∥CM,∠MAN=∠NCM,∴∠DAN=∠BCM,选项B正确;∴△BMQ∽△BAP,△DPN∽△DQC,∴BQ:BP=BM:AB=1:2,DP:DQ=DN:CD=1:2,∴DP=PQ,BQ=PQ,∴DP=PQ=QB,∴BP=DQ,选项C正确;∵AB=2AM,∴S▱AMCN:S▱ABCD=1:2,选项D正确;故选A.【点睛】此题考查了平行四边形的判定与性质、相似三角形的判定与性质等知识.此题难度适中,注意掌握数形结合思想的应用.9、D【解析】

根据三角形内角和定理以及直角三角形的性质即可求出答案.【详解】A.∵∠A+∠B=90°,∠A+∠B+∠C=180°,∴∠C=90°B.∠A+∠B=∠C,∠A+∠B+∠C=180°,∴∠C=90°,∴C.∵12+32=D.设a=1,b=2,c=2,∵12+22≠22,∴△ABC不是直角三角形,故D不能判断.故选:D.【点睛】本题考查了三角形的内角和,勾股定理的逆定理,解题的关键是熟练运用三角形的性质,本题属于基础题型.10、D【解析】

根据矩形点的性质可得AD∥BC,AD=BC,再求出AE的长度,再根据勾股定理列式求出BE的长,然后根据角平分线的定义求出∠BEF=∠DEF,根据两直线平行,内错角相等求出∠BFE=∠DEF,再求出BEF=∠BFE,根据等角对等边可得BE=BF,然后根据FC=BC-BF代入数据计算即可得解.【详解】解:在矩形ABCD中,AD∥BC,AD=BC=8,∵E为AD的中点,∴AE=AD=×8=4,在Rt△ABE中,,∵EF是∠BED的角平分线,∴∠BEF=∠DEF,∵AD∥BC,∴∠BFE=∠DEF,∴BEF=∠BFE,∴BE=BF,∴FC=BC-BF=8-5=1.故选:D.【点睛】本题考查了矩形的性质,勾股定理的应用,两直线平行,内错角相等的性质,等角对等边的性质,熟记各性质是解题的关键.二、填空题(每小题3分,共24分)11、61.8m或38.2m【解析】由于C为线段AB=100cm的黄金分割点,则AC=100×61.8m或AC=100-38.238.2m.12、1【解析】

根据作法判定出四边形OACB是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【详解】解:根据作图,AC=BC=OA,

∵OA=OB,

∴OA=OB=BC=AC,

∴四边形OACB是菱形,

∵AB=2cm,四边形OACB的面积为1cm2,

∴AB•OC=×2×OC=1,

解得OC=1cm.

故答案为:1.【点睛】本题考查了菱形的判定与性质,菱形的面积等于对角线乘积的一半的性质,判定出四边形OACB是菱形是解题的关键.13、菱形【解析】

由条件可知AB∥CD,AD∥BC,再证明AB=BC,即可解决问题.【详解】过点D作DE⊥AB于E,DF⊥BC于F.∵两把直尺的对边分别平行,即:AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵两把直尺的宽度相等,∴DE=DF.又∵平行四边形ABCD的面积=AB•DE=BC•DF,∴AB=BC,∴平行四边形ABCD为菱形.故答案为:菱形.【点睛】本题主要考查菱形的判定定理,添加辅助线,利用平行四边形的面积法证明平行四边形的邻边相等,是解题的关键.14、-1【解析】

一次函数y=kx-1的图象经过点(-2,1),将其代入即可得到k的值.【详解】解:一次函数y=kx﹣1的图象经过点(﹣2,1),即当x=﹣2时,y=1,可得:1=-2k﹣1,解得:k=﹣1.则k的值为﹣1.【点睛】本题考查一次函数图像上点的坐标特征,要注意利用一次函数的特点以及已知条件列出方程,求出未知数.15、1【解析】

根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.【详解】∵DE为△ABC的中位线,∠AFB=90°,∴DE=BC,DF=AB,∵BC=16,AB=10,∴DE=×16=8,DF=×10=5,∴EF=DE-DF=8-5=1,故答案为:1.【点睛】本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.16、【解析】

根据直线经过第一、三、四象限得到k>0,再根据图像即可求解.【详解】∵直线经过第一、三、四象限∴k>0,∴y随x的增大而增大,∵,∴故填:.【点睛】此题主要考查一次函数图像,解题的关键是熟知一次函数的图像与性质.17、7.1cm2【解析】已知四边形ABCD是矩形根据矩形的性质可得BC=DC,∠BCF=∠DCF=90°,又知折叠使点D和点B重合,根据折叠的性质可得C′F=CF,在RT△BCF中,根据勾股定理可得BC2+CF2=BF2,即32+(9-BF)2=BF2,解得BF=1,所以△BEF的面积=BF×AB=×1×3=7.1.点睛:本题考查了翻折变换的性质,矩形的性质,勾股定理,熟记翻折前后两个图形能够重合找出相等的线段、相等的角是解题的关键.18、【解析】试题分析:因为方程的一个根是x=-1,所以把x=-1代入方程得,所以,所以.考点:一元二次方程的根.三、解答题(共66分)19、(1)体育场离陈欢家2.5千米,小刚在体育场锻炼了15分钟;(2)体育场离文具店1千米;(3)

小刚在文具店停留20分;(4)小强从文具店回家的平均速度是千米/分【解析】

(1)根据观察函数图象的纵坐标,可得距离,观察函数图象的横坐标,可得时间;(2)根据观察函数图象的横坐标,可得体育场与文具店的距离;(3)观察函数图象的横坐标,可得在文具店停留的时间;(4)用回家的路程除以回家的时间即可.【详解】(1)由纵坐标看出体育场离陈欢家2.5千米,由横坐标看出小刚在体育场锻炼了15分钟;(2)由纵坐标看出体育场离文具店3.5-2.5=1(千米);(3)由横坐标看出

小刚在文具店停留55-35=20(分);(4)小强从文具店回家的平均速度是3.5÷(125-55)=(千米/分)【点睛】本题考查了函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.20、(1)8;(2)145°;(3)详见解析.【解析】

(1)作ADx轴于D,BE⊥x轴于E,由点A,B的坐标可得出AD=OD=2,BE=EO=4,DE=6,由面积公式可求出答案;

(2)作CH∥x轴,如图2,由平行线的性质可得出∠AOG=∠ACH,∠DEC=∠HCE,求出∠DEC+∠AOG=∠ACB=90°,可求出∠DEC=35°,则可得出答案;

(3)证得∠NEC=∠HEC,则∠NEF=180°-∠NEH=180°-2∠HEC,可得出结论.【详解】解:(1)作ADx轴于D,BEx轴于E,如图1,∵A(﹣2,2)、B(4,4),∴AD=OD=2,BE=OE=4,DE=6,∴S△ABC=S梯形ABED﹣S△AOD﹣S△AOE=×(2+4)×6﹣×2×2﹣×4×4=8;(2)作CH//x轴,如图2,∵D(0,﹣4),M(4,﹣4),∴DM//x轴,∴CH//OG//DM,∴∠AOG=∠ACH,∠DEC=∠HCE,∴∠DEC+∠AOG=∠ACB=90°,∴∠DEC=90°﹣55°=35°,∴∠CEF=180°﹣∠DEC=145°;(3)证明:由(2)得∠AOG+∠HEC=∠ACB=90°,而∠HEC+∠CEF=180°,∠NEC+∠CEF=180°,∴∠NEC=∠HEC,∴∠NEF=180°﹣∠NEH=180°﹣2∠HEC,∵∠HEC=90°﹣∠AOG,∴∠NEF=180°﹣2(90°﹣∠AOG)=2∠AOG.【点睛】本题是三角形综合题,考查了坐标与图形的性质,三角形的面积,平行线的性质,三角形内角和定理,熟练掌握平行的性质及三角形内角和定理是解题的关键.21、AB=5周长20面积24【解析】根据菱形的对角线互相垂直平分的性质,运用勾股定理即可求得菱形的边长,从而得到菱形的周长,再根据菱形的面积等于对角线乘积的一半即可计算出菱形的面积。22、(1)1万元(2)共有5种进货方案(3)购买A款汽车6辆,B款汽车1辆时对公司更有利【解析】分析:(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.(2)关系式为:公司预计用不多于2万元且不少于11万元的资金购进这两款汽车共15辆.(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.详解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=1.经检验,m=1是原方程的根且符合题意.答:今年5月份A款汽车每辆售价1万元;(2)设购进A款汽车x辆,则购进B款汽车(15﹣x)辆,根据题意得:11≤7.5x+6(15﹣x)≤2.解得:6≤x≤3.∵x的正整数解为6,7,8,1,3,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(1﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.当a=0.5时,(2)中所有方案获利相同.此时,购买A款汽车6辆,B款汽车1辆时对公司更有利.点睛:本题考查了分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.23、(1)+1(2)不能【解析】

将原式进行化简可得出原式=.(1)代入x=1+,即可求出原式的值;(2)令原式等于﹣1,可求出x=0,由原式中除数不能为零,可得出原代数式的值不能等于﹣1.【详解】解:原式=[﹣]•=(﹣)••.(1)当x=1+时,原式==+1.(2)不能,理由如下:解=﹣1,得:x=0,∵当x=0时,原式中除数=0,∴原代数式的值不能等于﹣1.【点睛】本题考查了分式的化简求值,将原式化简为是解题的关键.24、见解析【解析】

根据AAS证△AFE≌△DBE,推出AF=BD.结合已知条件,利用“有一组对边平行且相等的四边形是平行四边形”得到ADCF是平行四边形,进而证明ADCF是菱形.【详解】证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);∴AF=DB.∵DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=BC=DC,∴四边形ADCF是菱形.【点睛】本题考查了全等三角形的性质和判定,平行四边形的判定,菱形的判定的应用,解题的关键是正确寻找全等三角形,利用直角三角形的性质解决问题,属于中考常考题型.25、(1)①见解析;②AG=CE,AG⊥CE,理由见解析;(2)CE的长为或【解析】

(1)①根据题意补全图形即可;

②先判断出∠GDA=∠EDC,进而得出△AGD≌△CED,即可得出AG=CE,延长CE分别交AG、AD于点F、H,判断出∠AFH=∠HDC=90°即可得出结论;

(2)分两种情况,①当点G在线段BD的延长线上时,②当点G在线段BD上时,构造直角三角形利用勾股定理即可得出结论.【详解】解:(1)当点E在正方形ABCD内部时,①依题意,补全图形如图1:②AG=CE,AG⊥CE.

理由:

在正方形ABCD,

∴AD=CD,∠ADC=90°,

∵由DE绕着点D顺时针旋转90°得DG,

∴∠GDE=∠ADC=90°,GD=DE,

∴∠GDA=∠EDC

在△AGD和△CED中,,

∴△AGD≌△CED,

∴AG=CE.

如图2,延长CE分别交AG、AD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论