2023届普洱市重点中学数学八下期末考试试题含解析_第1页
2023届普洱市重点中学数学八下期末考试试题含解析_第2页
2023届普洱市重点中学数学八下期末考试试题含解析_第3页
2023届普洱市重点中学数学八下期末考试试题含解析_第4页
2023届普洱市重点中学数学八下期末考试试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,在正方形中,在边上,在边上,且,过点作,交于点,若,,则的长为()A.10 B.11 C.12 D.132.如图,矩形ABCD中,∠AOB=60°,AB=3,则BD的长是()A. B.5 C. D.63.下列命题:①任何数的平方根有两个;②如果一个数有立方根,那么它一定有平方根;③算术平方根一定是正数;④非负数的立方根不一定是非负数.错误的个数为()A.1B.2C.3D.44.如图,已知平行四边形中,则()A. B. C. D.5.某商店销售一种商品,售出部分商品后进行了降价促销,销售金额y(元)与销售量x(件)的函数关系如图所示,则降价后每件商品的销售价格为()A.12元 B.12.5元 C.16.25元 D.20元6.若分式有意义,则实数的取值范围是()A.x=2 B.x=-2 C.x≠2 D.x≠-27.如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是()A.3

B.2

C.

D.48.如图,在四边形中,与相交于点,,那么下列条件中不能判定四边形是菱形的为()A.∠OAB=∠OBA B.∠OBA=∠OBC C.AD∥BC D.AD=BC9.已知:在直角坐标系中,点A,B的坐标分别是(1,0),(0,3),将线段AB平移,平移后点A的对应点A′的坐标是(2,﹣1),那么点B的对应点B′的坐标是()A.(2,1) B.(2,3) C.(2,2) D.(1,2)10.若二次根式2-x有意义,则x的取值范围是()A.x<2 B.x≠2 C.x≤2 D.x≥211.如图,矩形纸片中,,将沿折叠,使点落在点处,交于点,则的长等于()A. B. C. D.12.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①② B.②③ C.①③ D.①④二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,已知直线分别交反比例函数和在第一象限的图象于点过点作轴于点交的图象于点连结.若是等腰三角形,则的值是________________.14.已知,则___________.15.已知函数y1=k1x+b1与函数y2=k2x+b2的图象如图所示,则不等式k1x+b1<k2x+b2的解集是.16._____.17.若关于x的一元二次方程x²-2x+c=0没有实数根.则实数c取值范围是________18.如图,在▱ABCD中(AD>AB),用尺规作图作射线BP交AD于点E,若∠D=50°,则∠AEB=___度.三、解答题(共78分)19.(8分)计算:(1)(2)-20.(8分)国家规定“中小学生每天在校体育活动时间不低于1h”,为此,某市就“每天在校体育活动”时间的问题随机调查了辖区内320名初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h请根据上述信息解答下列问题:(1)C组的人数是;(2)本次调查数据的中位数落在组内;(3)若该市辖区内约有32000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?21.(8分)定向越野作为一种新兴的运动项目,深受人们的喜爱.这种定向运动是利用地图和指北针到访地图上所指示的各个点标,以最短时间按序到达所有点标者为胜.下面是我区某校进行定向越野活动中,中年男子组的成绩(单位:分:秒).9:0114:459:4619:2211:2018:4711:4012:3211:5213:4522:2715:0017:3013:2218:3410:4519:2416:2621:3315:3119:5014:2715:5516:0720:4312:1321:4114:5711:3912:4512:5715:3113:2014:5014:579:4112:1314:2712:2512:38例如,用时最少的赵老师的成绩为9:01,表示赵老师的成绩为9分1秒.以下是根据某校进行定向越野活动中,中年男子组的成绩中的数据,绘制的统计图表的一部分.某校中年男子定向越野成绩分段统计表分组/分频数频率9≤x<1140.111≤x<13b0.27513≤x<1590.22515≤x<176d17≤x<1930.07519≤x<2140.121≤x<2330.075合计ac(1)这组数据的极差是____________;(2)上表中的a=____________,b=____________,c=____________,d=____________;(3)补全频数分布直方图.22.(10分)问题发现:(1)如图①,正方形ABCD的边长为4,对角线AC、BD相交于点O,E是AB上点(点E不与A、B重合),将射线OE绕点O逆时针旋转90°,所得射线与BC交于点F,则四边形OEBF的面积为.问题探究:(2)如图②,线段BQ=10,C为BQ上点,在BQ上方作四边形ABCD,使∠ABC=∠ADC=90°,且AD=CD,连接DQ,求DQ的最小值;问题解决:(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD中,∠ABC=∠ADC=90°,AD=CD,AC=600米.其中AB、BD、BC为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB+BD+BC的最大值.23.(10分)如图所示,在△ABC中,点D为BC边上的一点,AD=12,BD=16,AB=20,CD=1.(1)试说明AD⊥BC.(2)求AC的长及△ABC的面积.(3)判断△ABC是否是直角三角形,并说明理由.24.(10分)如图,方格纸中每个小方格都长为1个单位的正方形,已知学校位置坐标为A(1,2)。(1)请在图中建立适当的平面直角坐标系;(2)写出图书馆B位置的坐标。25.(12分)如图,在中,点,分别在,上,且,连结、.求证:.26.如图1,在平面直角坐标系中点,,以为顶点在第一象限内作正方形.反比例函数、分别经过、两点(1)如图2,过、两点分别作、轴的平行线得矩形,现将点沿的图象向右运动,矩形随之平移;①试求当点落在的图象上时点的坐标_____________.②设平移后点的横坐标为,矩形的边与,的图象均无公共点,请直接写出的取值范围____________.

参考答案一、选择题(每题4分,共48分)1、D【解析】

过点A作AH⊥BE于K,交BC于H,设AB=m,由正方形性质和等腰三角形性质可证明:△BKH∽△BFG,BH=BG,再证明△ABH≌△BCE,可得BH=CE,可列方程(m−2)=m−7,即可求得BC=12,CE=5,由勾股定理可求得BE.【详解】解:如图,过点A作AH⊥BE于K,交BC于H,设AB=m,∵正方形ABCD∴BC=CD=AB=m,∠ABH=∠C=90°∵CG=2,DE=7,∴CE=m−7,BG=m−2∵FG⊥BE∴∠BFG=90°∵AF=AB,AH⊥BE∴BK=FK,即BF=2BK,∠BKH=90°=∠BFG∴△BKH∽△BFG∴,即BH=BG=(m−2)∵∠ABK+∠CBE=∠ABK+∠BAH=90°∴∠BAH=∠CBE在△ABH和△BCE中,∠BAH=∠CBE,AB=BC,∠ABH=∠BCE,∴△ABH≌△BCE(ASA)∴BH=CE∴(m−2)=m−7,解得:m=12∴BC=12,CE=12−7=5在Rt△BCE中,BE=.故选:D.【点睛】本题考查了正方形性质,全等三角形判定和性质,等腰三角形性质,勾股定理,相似三角形判定和性质等;解题时要熟练运用以上知识,通过转化建立方程求解.2、D【解析】

先根据矩形的性质可得,再根据等边三角形的判定与性质可得,由此即可得出答案.【详解】四边形ABCD是矩形是等边三角形故选:D.【点睛】本题考查了矩形的性质、等边三角形的判定与性质,熟记矩形的性质是解题关键.3、D【解析】【分析】根据立方根和平方根的知识点进行解答,正数的平方根有两个,1的平方根只有一个,任何实数都有立方根,则非负数才有平方根,一个数的立方根与原数的性质符号相同,据此进行答题.【详解】①1的平方根只有一个,故任何数的平方根都有两个结论错误;②负数有立方根,但是没有平方根,故如果一个数有立方根,那么它一定有平方根结论错误;③算术平方根还可能是1,故算术平方根一定是正数结论错误;④非负数的立方根一定是非负数,故非负数的立方根不一定是非负数,错误的结论①②③④,故选D.【点睛】本题主要考查立方根、平方根和算术平方根的知识点,注意一个正数有两个平方根,它们互为相反数;1的平方根是1;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,1的立方根式1.4、B【解析】

由平行四边形的邻角互补得到的度数,由平行四边形的对角相等求.【详解】解:因为:平行四边形,所以:,,又因为:所以:,解得:,所以:.故选B.【点睛】本题考查的是平行四边形的性质,掌握平行四边形的角的性质是解题关键.5、B【解析】

首先根据题意求出降价后的函数关系式,其斜率即为每件商品的销售价格,即可得解.【详解】根据题意,设降价后的函数解析式为由图像可知,该函数过点(40,800)和(80,1300),代入得解得∴故降价后每件商品的销售价格为12.5元,故答案为B.【点睛】此题主要考查一次函数的实际应用,熟练掌握,即可解题.6、D【解析】

根据分式有意义分母不能为零即可解答.【详解】∵分式有意义,∴x+2≠0,∴x≠-2.故选:D.【点睛】本题考查了分式有意义的条件,分式分母不能为零是解题的关键点.7、A【解析】

利用中位线定理,得到DE∥AB,根据平行线的性质,可得∠EDC=∠ABC,再利用角平分线的性质和三角形内角外角的关系,得到DF=DB,进而求出DF的长.【详解】在△ABC中,D、E分别是BC、AC的中点,

∴DE∥AB,

∴∠EDC=∠ABC.

∵BF平分∠ABC,

∴∠EDC=2∠FBD.

在△BDF中,∠EDC=∠FBD+∠BFD,

∴∠DBF=∠DFB,

∴FD=BD=BC=×6=1.

故选:A.【点睛】考查了三角形中位线定理和等腰三角形的判定于性质.三角形的中位线平行于第三边,当出现角平分线,平行线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.8、A【解析】

根据菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形,据此判断即可.【详解】A.∵AC⊥BD,BO=DO,∴AC是BD的垂直平分线,∴AB=AD,CD=BC,∴∠ABD=∠ADB,∠CBD=∠CDB,∵∠OAB=∠OBA,∴∠OAB=∠OBA=45°,∵OC与OA的关系不确定,∴无法证明四边形ABCD的形状,故此选项正确;B.∵AC⊥BD,BO=DO,∴AC是BD的垂直平分线,∴AB=AD,CD=BC,∴∠ABD=∠ADA,∠CBD=∠CDB,∵∠OBA=∠OBC,∴∠ABD=∠ADB=∠CBD=∠CDB,BD=BD,∴△ABD≌△CBD,∴AB=BC=AD=CD,∴四边形ABCD是菱形,故此选项错误;C.∵AD∥BC,∴∠DAC=∠ACB,∵∠AOD=∠BOC,BO=DO,∴△AOD≌△BOC,∴AB=BC=CD=AD,∴四边形ABCD是菱形,故此选项错误;D.∵AD=BC,BO=DO,∠BOC=∠AOD=90°,∴△AOD≌△BOC,∴AB=BC=CD=AD,∴四边形ABCD是菱形,故此选项错误.故选:A.【点睛】此题考查菱形的判定,解题关键在于掌握菱形的三种判定方法.9、D【解析】

根据点A、A′的坐标确定出平移规律,然后根据规律求解点B′的坐标即可.【详解】∵A(1,0)的对应点A′的坐标为(2,﹣1),∴平移规律为横坐标加1,纵坐标减1,∵点B(0,3)的对应点为B′,∴B′的坐标为(1,2).故选D.【点睛】本题考查了坐标与图形变化−平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.10、C【解析】

二次根式有意义要求被开方数为非负数,由此可得出x的取值范围.【详解】由题意得:1-x≥0,解得:x≤1.故选C.【点睛】本题考查二次根式有意义的条件,比较简单,注意掌握被开方数只能为非负数.11、B【解析】

根据矩形的性质可得AD∥BC,再由平行线及折叠的性质可得∠DAC=∠ACF,得到AF=CF,在Rt△CDF中,运用勾股定理列出方程即可解答.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,∠D=90°,AD=BC=6,DC=AB=4,∴∠DAC=∠ACB又∵△AEC是由△ABC折叠而得,∴∠ACF=∠ACB∴∠DAC=∠ACF∴AF=CF设DF=x,则CF=AF=6-x,∴在Rt△CDF中,,即解得:,即故答案为:B.【点睛】本题考查了矩形中的折叠问题,涉及矩形的性质,等腰三角形的判定以及折叠的性质,勾股定理的运用,解题的关键是根据矩形及折叠的性质得到AF=CF.12、D【解析】试题解析:∵AE=AB,∴BE=2AE,由翻折的性质得,PE=BE,∴∠APE=30°,∴∠AEP=90°﹣30°=60°,∴∠BEF=(180°﹣∠AEP)=(180°﹣60°)=60°,∴∠EFB=90°﹣60°=30°,∴EF=2BE,故①正确;∵BE=PE,∴EF=2PE,∵EF>PF,∴PF<2PE,故②错误;由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30°,∴BE=2EQ,EF=2BE,∴FQ=3EQ,故③错误;由翻折的性质,∠EFB=∠EFP=30°,∴∠BFP=30°+30°=60°,∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,∴∠PBF=∠PFB=60°,∴△PBF是等边三角形,故④正确;综上所述,结论正确的是①④.故选D.考点:1.翻折变换(折叠问题);2.矩形的性质.二、填空题(每题4分,共24分)13、或【解析】

根据题意,先求出点A、B的坐标,然后得到点C的坐标,由等腰三角形的性质,进行分类讨论,即可求出k的值.【详解】解:根据题意,有则,解得:同理可得:为等腰三角形,当时,即整理得解得或(舍去);当时,即整理得,解得或(舍).故答案为:或.【点睛】本题利用反比例函数与一次函数交点特征将点坐标用含的式子表示出来,对等腰三角形的腰进行分类讨论.属于常考题型14、【解析】

将二次根式化简代值即可.【详解】解:所以原式.故答案为:【点睛】本题考查了二次根式的运算,将二次根式转化为和已知条件相关的式子是解题的关键.15、x<1【解析】

利用函数图象,写出函数y1=k1x+b1的图象在函数y2=k2x+b2的图象下方所对应的自变量的范围即可.【详解】解:根据图象得,当x<1时,y1<y2,即k1x+b1<k2x+b2;故答案为:x<1【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16、【解析】

原式化为最简二次根式,合并即可得到结果.【详解】解:原式=+2=3.故答案为3【点睛】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.17、【解析】

利用判别式的意义得到,然后解不等式即可.【详解】解:根据题意得:,解得:,故答案为:【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.18、1.【解析】

由平行四边形的性质可知:AD∥BC,推出∠AEB=∠EBC,求出∠EBC即可;【详解】∵四边形ABCD是平行四边形,∴∠ABC=∠D=50°,AD∥BC,由作图可知,BE平分∠ABC,∴∠EBC=∠ABC=1°,∴∠AEB=∠EBC=1°,故答案为1.【点睛】本题考查平行四边形的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(共78分)19、(1);(2)【解析】分析:(1)按照“二次根式加减法法则”进行计算即可;(2)根据“二次根式相关运算的运算法则”结合“平方差公式和完全平方公式”进行计算即可.详解:(1)原式===;(2)原式===.点睛:熟记“二次根式的相关运算法则和平方差公式及完全平方公式”是解答本题的关键.20、(1)根C组的人数为140人;(2)调查数据的中位数落在C组;(3)达国家规定体育活动时间的人约有20000人.【解析】

(1)根据直方图可得总人数以及各小组的已知人数,进而根据其间的关系可计算C组的人数;

(2)根据中位数的概念,中位数应是第160、161人时间的平均数,分析可得答案;

(3)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数.【详解】解:(1)根据题意有:C组的人数为320﹣20﹣100﹣60=140;(2)根据中位数的概念,中位数应是第160、161人时间的平均数,分析可得其均在C组,故调查数据的中位数落在C组;(3)达国家规定体育活动时间的人数约占×100%=62.5%.所以,达国家规定体育活动时间的人约有32000×62.5%=20000(人).【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.21、见解析【解析】

(1)先找出这组成绩的最大值与最小值,计算即可得;(2)根据分组“9≤x<11”的频数与频率可求得a的值,然后用a乘0.275可求得b的值,用6除以a可得d,把所有频率相加可求得c,据此填空即可;(3)根据b的值补全图形即可.【详解】(1)这组数据的最大值为22:27,最小值为9:01,所以极差为:22:27-9:01=13:26,故答案为:13:26或13分26秒;(2)a=4÷0.1=40,b=40×0.275=11,d=6÷40=0.15,c=0.1+0.275+0.225+0.15+0.075+0.1+0.075=1,故答案为:40,11,1,0.15.(3)如图所示.【点睛】本题考查了极差、频数分布表、频数分布直方图,熟练掌握频数、频率与总数间的关系是解题的关键.22、(1)4;(2)5;(3)600(+1).【解析】

(1)如图①中,证明△EOB≌△FOC即可解决问题;(2)如图②中,连接BD,取AC的中点O,连接OB,OD.利用四点共圆,证明∠DBQ=∠DAC=45°,再根据垂线段最短即可解决问题.(3)如图③中,将△BDC绕点D顺时针旋转90°得到△EDA,首先证明AB+BC+BD=(+1)BD,当BD最大时,AB+BC+BD的值最大.【详解】解:(1)如图①中,∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∵∠EOF=90°,∴∠EOF=∠BOC,∴∠EOB=∠FOC,∴△EOB≌△FOC(SAS),∴S△EOB=S△OFC,∴S四边形OEBF=S△OBC=•S正方形ABCD=4,故答案为:4;(2)如图②中,连接BD,取AC的中点O,连接OB,OD.∵∠ABD=∠ADC=90°,AO=OC,∴OA=OC=OB=OD,∴A,B,C,D四点共圆,∴∠DBC=∠DAC,∵DA=DC,∠ADC=90°,∴∠DAC=∠DCA=45°,∴∠DBQ=45°,根据垂线段最短可知,当QD⊥BD时,QD的值最短,DQ的最小值=BQ=5.(3)如图③中,将△BDC绕点D顺时针旋转90°得到△EDA,∵∠ABC+∠ADC=180°,∴∠BCD+∠BAD=∠EAD+BAD=180°,∴B,A,E三点共线,∵DE=DB,∠EDB=90°,∴BE=BD,∴AB+BC=AB+AE=BE=BD,∴BC+BC+BD=(+1)BD,∴当BD最大时,AB+BC+BD的值最大,∵A,B,C,D四点共圆,∴当BD为直径时,BD的值最大,∵∠ADC=90°,∴AC是直径,∴BD=AC时,AB+BC+BD的值最大,最大值=600(+1).【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,四点共圆,圆周角定理,垂线段最短等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.23、(1)见解析;(2)15,150;(3)是【解析】试题分析:(1)根据勾股定理的逆定理即可判断;(2)先根据勾股定理求得斜边的长,再根据直角三角形的面积公式即可求得结果;(3)根据勾股定理的逆定理即可判断.(1)∴是直角三角形∴即;(2)∵,且点为边上的一点∴∴由勾股定理得:∴;(3)是直角三角形,∴是直角三角形.考点:本题考查的是勾股定理,直角三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论