版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图①,在平面直角坐标系中,平行四边形ABCD在第一象限,且AB∥x轴.直线y=-x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图②,那么平行四边形ABCD的面积为()A.4 B. C. D.82.如图,以正方形ABCD的边AB为一边向外作等边△ABE,则∠BED的度数为()A.55° B.45° C.40° D.42.5°3.如图,架在消防车上的云梯AB长为10m,∠ADB=90°,AD=2BD,云梯底部离地面的距离BC为2m,则云梯的顶端离地面的距离AE为(
)A.(2+2)m B.(4+2)m C.(5+2)m D.7m4.在平行四边形中,下列结论一定成立的是()A. B. C. D.5.下列命题是真命题的是()A.平行四边形的对角线互相平分且相等B.任意多边形的外角和均为360°C.邻边相等的四边形是菱形D.两个相似比为1:2的三角形对应边上的高之比为1:46.某校对八年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):4、4、3.5、5、5、4,这组数据的众数是()A.4 B.3.5 C.5 D.37.下列各式中,正确的是()A. B. C. D.8.如图,在中,,点在上,,若,,则的长是()A. B. C. D.9.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A. B. C. D.10.数据2,4,3,4,5,3,4的众数是()A.4 B.5 C.2 D.311.若a,b,c满足则关于x的方程的解是()A.1,0 B.-1,0 C.1,-1 D.无实数根12.某校举办“汉字听写大赛”,7名学生进入决赛,他们所得分数互不相同,比赛共设3个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是()A.平均数 B.中位数 C.众数 D.方差二、填空题(每题4分,共24分)13.周末,小李从家里出发骑车到少年宫学习绘画,学完后立即回家,他离家的距离y(km)与时间x(h)之间的函数关系如图所示,有下列结论:①他家离少年宫30km;②他在少年宫一共停留了3h;③他返回家时,离家的距离y(km)与时间x(h)之间的函数表达式是y=-20x+110;④当他离家的距离y=10时,时间x=.其中正确的是________(填序号).14.如图,在平行四边形ABCD中,AB=4,BC=6,分别以A,C为圆心,以大于AC的长为半径作弧,两弧相交于MN两点,作直线MN交AD于点E,则△CDE的周长是_____.15.=_____.16.如图,菱形ABCD中,AC、BD交于点O,DE⊥BC于点E,连接OE,若∠ABC=120°,则∠OED=______.17.一组数据,,,,,的方差是_________.18.如图,等边△AOB中,点B在x轴正半轴上,点A坐标为(1,),将△AOB绕点O顺时针旋转15°,此时点A对应点A′的坐标是_____.三、解答题(共78分)19.(8分)计算:(1);(2)20.(8分)如图,正方形ABCD中,AB=4,点E为边AD上一动点,连接CE,以CE为边,作正方形CEFG(点D、F在CE所在直线的同侧),H为CD中点,连接FH.(1)如图1,连接BE,BH,若四边形BEFH为平行四边形,求四边形BEFH的周长;(2)如图2,连接EH,若AE=1,求△EHF的面积;(3)直接写出点E在运动过程中,HF的最小值.21.(8分)解不等式组并将解集在数轴上表示出来.22.(10分)已知四边形ABCD是矩形,对角线AC和BD相交于点P,若在矩形的上方作△DEA,且使DE∥AC,AE∥BD.(1)求证:四边形DEAP是菱形;(2)若AE=CD,求∠DPC的度数.23.(10分)为了丰富学生的课外活动,拓展孩子们的课外视野,我校的社团活动每年都在增加,社员也一直在增加.2017年我校八年级社员的总人数是300人,2019年我校八年级总校社员有432人。试求出这两年八年级社员人数的平均增长率.24.(10分)如图,在梯形中,,,,,(1)求对角线的长度;(2)求梯形的面积.25.(12分)已知:直线始终经过某定点.(1)求该定点的坐标;(2)已知,,若直线与线段相交,求的取值范围;(3)在范围内,任取3个自变量,,,它们对应的函数值分别为,,,若以,,为长度的3条线段能围成三角形,求的取值范围.26.分解因式:
参考答案一、选择题(每题4分,共48分)1、D【解析】
根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8-4=4,当直线经过D点,设交AB与N,则,作DM⊥AB于点M.利用三角函数即可求得DM即平行四边形的高,然后利用平行四边形的面积公式即可求解.【详解】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则,如图所示,当直线经过D点,设交AB与N,则,作于点M.与轴形成的角是,轴,,则△DMN为等腰直角三角形,设由勾股定理得,解得,即DM=2则平行四边形的面积是:.故选:D.【点睛】本题考查一次函数与几何综合,解题的关键利用l与m的函数图像判断平行四边形的边长与高.2、B【解析】
根据等边三角形,可证△AED为等腰三角形,从而可求∠AED,也就可得∠BED的度数.【详解】解:∵等边△ABE∴∠EAB=∠BED=60°,AE=AD∵四边形ABCD是正方形∴∠BAD=90°,AB=AD∴∠EAD=150°,AE=AD∴∠AED=∠ADE=15°∴∠BED=60°-15°=45°故选:B.【点睛】此题主要考查了等边三角形的性质.即每个角为60度.3、B【解析】
先根据勾股定理列式求出BD,则AD可求,AE也可求.【详解】解:由勾股定理得:AD2+BD2=AB2,4BD2+BD2=100,BD=2,则AD=2BD=4,AE=AD+DE=4+2.故答案为B【点睛】本题考查了勾股定理,灵活应用勾股定理求线段长是解题的关键.4、D【解析】
根据平行四边形的性质即可解决问题【详解】解:∵四边形ABCD是平行四边形,∴,AD∥BC,∴故选:D【点睛】本题考查学生对平行四边形概念的掌握情况,平行四边形对边平行且相等,对角相等,邻角互补,对角线互相平分.解题的关键是熟练掌握平行四边形的性质,属于中考常考题型.5、B【解析】
利用平行四边形的性质、多边形的外角和、菱形的判定及相似三角形的性质判断后即可确定正确的选项.【详解】解:A、平行四边形的对角线互相平分但不一定相等,故错误,是假命题;B、任意多边形的外角和均为360°,正确,是真命题;C、邻边相等的平行四边形是菱形,故错误,是假命题;D、两个相似比为1:2的三角形对应边上的高之比为1:2,故错误,是假命题,故选:B.【点睛】本题考查了命题的判断,涉及平行四边形的性质、多边形的外角和、菱形的判定及相似三角形的性质等知识点,掌握基本知识点是解题的关键.6、A【解析】
一组数据中出现次数最多的数据叫做众数,依此求解即可.【详解】在这一组数据中4出现了3次,次数最多,故众数是4.故选:A.【点睛】考查众数的概念,掌握众数的概念是解题的关键.7、B【解析】
,要注意的双重非负性:.【详解】;;;,故选B.【点睛】本题考查平方根的计算,重点是掌握平方根的双重非负性.8、C【解析】
根据勾股定理求出斜边长,根据直角三角形的性质解答.【详解】在Rt△ABC中,∠ACB=90°,∴AB==5,∵∠ACB=90°,AD=BD,∴CD=AB=,故选C.【点睛】本题考查的是勾股定理、直角三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.9、D【解析】试题分析:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为D.故选D.考点:函数的图象.10、A【解析】
根据众数的定义求解即可.【详解】∵4出现的次数最多,∴众数是4.故选A.【点睛】本题考查了众数及中位数的定义,众数是一组数据中出现次数最多的那个数.11、C【解析】【分析】由方程组得到a+c=0,即a=-c,b=0,再代入方程可求解.【详解】因为a+b+c=0——①;a-b+c=0——②且a≠0,联立两式①+②得a+c=0,即a=-c,b=0,代入ax²+bx+c=0得:ax²-a=0解得x=1或x=-1故选:C【点睛】本题考核知识点:一元二次方程.解题关键点:由方程组推出a,b,c的特殊关系.12、B【解析】
由于比赛设置了3个获奖名额,共有7名选手参加,故应根据中位数的意义分析.【详解】解:因为3位获奖者的分数肯定是7名参赛选手中最高的,而且7个不同的分数按从小到大排序后,中位数之后的共有3个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选:.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.二、填空题(每题4分,共24分)13、①②③【解析】分析:根据图象能够理解离家的距离随时间的变化情况进行判断即可.详解:①他家离少年宫=30km,正确;②他在少年宫一共停留了4﹣1=3个小时,正确;③他返回家时,y(km)与时间x(h)之间的函数表达式是y=﹣20x+110,正确;④当他离家的距离y=10km时,时间x=5(h)或x==(h),错误.故答案为:①②③.点睛:本题考查了一次函数的应用,根据图象能够理解离家的距离随时间的变化情况,是解决本题的关键.14、1【解析】
利用垂直平分线的作法得MN垂直平分AC,则EA=EC,利用等线段代换得到△CDE的周长=AD+CD,然后根据平行四边形的性质可确定周长的值.【详解】解:利用作图得MN垂直平分AC,∴EA=EC,∴△CDE的周长=CE+CD+ED=AE+ED+CD=AD+CD,∵四边形ABCD为平行四边形,∴AD=BC=6,CD=AB=4,∴△CDE的周长=6+4=1.故答案为1.【点睛】本题考查了作图−基本作图,也考查了平行四边形的性质.解题的关键是熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).15、1【解析】
利用二次根式乘除法法则进行计算即可.【详解】===1,故答案为1.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.16、30°【解析】
根据直角三角形的斜边中线性质可得OE=BE=OD,根据菱形性质可得∠DBE=∠ABC=60°,从而得到∠OEB度数,再依据∠OED=90°-∠OEB即可.【详解】∵四边形ABCD是菱形,
∴O为BD中点,∠DBE=∠ABC=60°.
∵DE⊥BC,
∴在Rt△BDE中,OE=BE=OD,
∴∠OEB=∠OBE=60°.
∴∠OED=90°-60°=30°.
故答案是:30°【点睛】考查了菱形的性质、直角三角形斜边中线的性质,解决这类问题的方法是四边形转化为三角形.17、【解析】
先求得数据的平均数,然后代入方差公式计算即可.【详解】解:数据的平均数=(2-3+3+6+4)=2,方差.故答案为.【点睛】本题考查方差的定义,牢记方差公式是解答本题的关键.18、.【解析】
作AE⊥OB于E,A′H⊥OB于H.求出A′H,OH即可解决问题.【详解】如图,作AE⊥OB于E,A′H⊥OB于H.∵A(1,),∴OE=1,AE=,∴OA==2,∵△OAB是等边三角形,∴∠AOB=60°,∵∠AOA′=15°,∴∠A′OH=60°﹣15°=45°,∵OA′=OA=2,H⊥OH,∴A′H=OH=,∴(,),故答案为:(,).【点睛】此题考查等边三角形的性质,旋转的性质,勾股定理,求直角坐标系中点的坐标需从点向坐标轴作垂线,求出垂线段的长度由此得到点的坐标.三、解答题(共78分)19、(1)(2)【解析】
(1)按顺序分别进行二次根式的化简,绝对值的化简,然后再进行合并即可;(2)按顺序进行分母有理化、利用平方差公式计算,然后再按运算顺序进行计算即可.【详解】(1)原式;(2)原式.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.20、(1)8;(2);(3)3.【解析】
(1)由平行四边形的性质和正方形的性质可得EC=EF=BH,BC=DC,可证Rt△BHC≌Rt△CED,可得CH=DE,由“SAS”可证BE=EC,可得BE=EF=HF=BH=EC,由勾股定理可求BH的长,即可求四边形BEFH的周长;
(2)连接DF,过点F作FM⊥AD,交AD延长线于点M,由“AAS”可证△EFM≌△CED,可得CD=EM=4,DE=FM=3,由三角形面积公式可求解;
(3)过点F作FN⊥CD的延长线于点N,设AE=x=DM,则DE=4-x=FM,NH=4-x+2=6-x,由勾股定理可求HF的长,由二次函数的性质可求HF的最小值.【详解】解:(1)∵四边形BEFH为平行四边形
∴BE=HF,BH=EF
∵四边形EFGC,四边形ABCD都是正方形
∴EF=EC,BC=CD=4=AD
∴BH=EC,且BC=CD
∴Rt△BHC≌Rt△CED(HL)
∴CH=DE
∵H为CD中点,
∴CH=2=DE
∴AE=AD-DE=2=DE,且AB=CD,∠BAD=∠ADC=90°
∴Rt△ABE≌Rt△DCE(SAS)
∴BE=EC
∴BE=EF=HF=BH=EC
∵CH=2,BC=4
∴BH===2
∴四边形BEFH的周长=BE+BH+EF+FH=8;
(2)如图2,连接DF,过点F作FM⊥AD,交AD延长线于点M,
∵AE=1,
∴DE=3
∵∠FEM+∠CEM=90°,∠CEM+∠ECD=90°
∴∠FEM=∠ECD,且CE=EF,∠EDC=∠EMF=90°
∴△EFM≌△CED(AAS)
∴CD=EM=4,DE=FM=3,
∴DM=1,
∴S△EFH=S△EFD+S△EDH+S△DHF=×3×3+×3×2+×2×1=;
(3)如图3,过点F作FN⊥CD的延长线于点N,
由(2)可知:△EFM≌△CED
∴CD=EM,DE=FM,
∴CD=AD=EM,
∴AE=DM,
设AE=x=DM,则DE=4-x=FM,
∵FN⊥CD,FM⊥AD,ND⊥AD
∴四边形FNDM是矩形
∴FN=DM=x,FM=DN=4-x
∴NH=4-x+2=6-x
在Rt△NFH中,HF===
∴当x=3时,HF有最小值==3.故答案为:(1)8;(2);(3)3.【点睛】本题是四边形综合题,考查正方形的性质,平行四边形的判定,全等三角形的判定和性质,勾股定理,二次函数的性质,添加恰当辅助线构造全等三角形是题的关键.21、.【解析】试题分析:首先分别求出不等式组中两个不等式的解,然后在数轴上表示出来,得出不等式组的解.试题解析:由①,得x>-3,由②,得x≤1,解集在数轴上表示为:所以原不等式的解集为:-3<x≤1.考点:解不等式组22、(1)见解析;(2)∠DPC=60°.【解析】试题分析:(1)由题中由已知条件可得其为平行四边形,再加上一组邻边相等即为菱形.(2)由(1)中的结论即可证明△PDC为等边三角形,从而得出∠DPC=60°.试题解析:(1)∵DE∥AC,AE∥BD,∴四边形DEAP为平行四边形,∵ABCD为矩形,∴AP=AC,DP=BD,AC=BD,∴AP=PD,PD=CP,∴四边形DEAP为菱形;∵四边形DEAP为菱形,∴AE=PD,∵AE=CD,∴PD=CD,∵PD=CP(上小题已证),∴△PDC为等边三角形,∴∠DPC=60°.考点:菱形的判定.23、20%【解析】
根据题意,提取出有效信息,建立一元二次方程的模型进行解题即可.【详解】解:设这两年八年级社员人数的平均增长率为x,依题意得,300(1+x)2=432解得:x=0.2或x=-2.2(舍)∴这两年八年级社员人数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度智能化办公系统采购与安装合同2篇
- 房屋居间合同8篇
- 2024版文化艺术展览承办合同
- 采购药合同范本
- 2024年度互联网信息服务合同及信息服务内容
- 2024年度加工承揽合同标的为机械零部件加工服务3篇
- 二零二四年区块链技术研发与推广合同
- 2024年度居间合同
- 二零二四年度城市轨道交通建设合作合同
- 专业技术培训实战心得考核试卷
- 各种常用管道管径的表示方法及对照表正式版
- 信息化平台管理制度
- 2024年版-生产作业指导书SOP模板
- JT-T-816-2011机动车维修服务规范
- 儿童游乐设施:物业管理手册
- 休克的诊断与鉴别诊断
- 2024年医师定期考核人文医学题库试题+答案
- 学校问题学生处理方案(2篇)
- 园艺植物组织培养-形考作业2-国开-参考资料
- HYT 069-2005 赤潮监测技术规程
- 审计报告中无所有者权益变动表书面声明
评论
0/150
提交评论