版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.将一副直角三角板如图放置,点C在FD的延长上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=12,则CD的长为()A.4 B.12﹣4 C.12﹣6 D.62.矩形与矩形如图放置,点共线,共线,连接,取的中点,连接,若,,则()A. B. C.2 D.3.下列图形中,是轴对称图形,不是中心对称图形的是()A. B.C. D.4.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、1.应该选()参加.A.甲 B.乙 C.甲、乙都可以 D.无法确定5.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A.4.5m B.4.8m C.5.5m D.6m6.如图,甲、丙两地相距500km,一列快车从甲地驶往丙地,途中经过乙地;一列慢车从乙地驶往丙地,两车同时出发,同向而行,折线ABCD表示两车之间的距离y(km)与慢车行驶的时间为x(h)之间的函数关系.根据图中提供的信息,下列说法不正确的是()A.甲、乙两地之间的距离为200km B.快车从甲地驶到丙地共用了2.5hC.快车速度是慢车速度的1.5倍 D.快车到达丙地时,慢车距丙地还有50km7.如果一组数据1、2、x、5、6的众数是6,则这组数据的中位数是()A.1 B.2 C.5 D.68.有100个数据,落在某一小组内的频数与总数之比是0.4,那么在这100个数据中,落在这一小组内的数据的频数是()A.100B.40C.20D.49.下列根式中,不.是.最简二次根式的是()A.2 B.3 C.7 D.110.下列变形是因式分解的是()A.x(x+1)=x2+x B.m2n+2n=n(m+2)C.x2+x+1=x(x+1)+1 D.x2+2x﹣3=(x﹣1)(x+3)二、填空题(每小题3分,共24分)11.如图,在▱ABCD中,对角线AC、BD相交于点O.如果AC=8,BD=14,AB=x,那么x的取值范围是____.12.计算:_________.13.已知一组数据4,,6,9,12的众数为6,则这组数据的中位数为_________.14.已知一次函数y=mx+n与x轴的交点为(﹣3,0),则方程mx+n=0的解是_____.15.一个有进水管与出水管的容器,从某时刻开始内只进水不出水,在随后的内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量单位:)与时间(单位)之间的关系如图所示:则时容器内的水量为__________.16.某鞋店销售一款新式女鞋,试销期间对该款不同型号的女鞋销售量统计如下表:尺码/厘米2222.52323.52424.525销售量/双12311864该店经理如果想要了解哪种女鞋的销售量最大,那么他应关注的统计量是_____.17.如图,菱形的对角线交于点为边的中点,如果菱形的周长为,那么的长是__________.18.经过某十字路口的汽车,可直行,也可向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率是.三、解答题(共66分)19.(10分)解不等式组:,并把不等式组的解集在数轴上标出来20.(6分)(1)先化简,再求值:÷(﹣),其中a2+3a﹣1=1.(2)若关于x的分式方程+1的解是正数,求m的取值范围.21.(6分)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为点E、F,且BE=DF.求证:▱ABCD是菱形.22.(8分)为了解某校九年级学生立定跳远水平,随机抽取该年级名学生进行测试,并把测试成绩(单位:)绘制成不完整的频数分布表和频数分布直方图.请根据图表中所提供的信息,完成下列问题(1)表中=,=;(2)请把频数分布直方图补充完整;(3)跳远成绩大于等于为优秀,若该校九年级共有名学生,估计该年级学生立定跳远成绩优秀的学生有多少人?23.(8分)如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFMN的一边MN在边BC上,顶点E、F分别在AB、AC上,其中BC=24cm,高AD=12cm.(1)求证:△AEF∽△ABC:(2)求正方形EFMN的边长.24.(8分)如图,在▱ABCD中,E,F是对角线AC上的两点,且AF=CE.求证:DE∥BF.25.(10分)如图,在△ABC中,D是BC边的中点,分别过B、C做射线AD的垂线,垂足分别为E、F,连接BF、CE.(1)求证:四边形BECF是平行四边形;(2)我们知道S△ABD=S△ACD,若AF=FD,在不添加辅助线的条件下,直接写出与△ABD、△ACD面积相等的所有三角形.26.(10分)下表给出三种上宽带网的收费方式.收费方式月使用费/元包时上网时间/超时费/(元/)不限时设月上网时间为,方式的收费金额分别为,直接写出的解析式,并写出自变量的取值范围;填空:当上网时间时,选择方式最省钱;当上网时间时,选择方式最省钱;当上网时间时,选择方式最省钱;
参考答案一、选择题(每小题3分,共30分)1、B【解析】
过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=60°,进而可得出答案.【详解】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=45°,AC=12,∴BC=AC=12.∵AB∥CF,∴BM=BC×sin45°=CM=BM=12,在△EFD中,∠F=90°,∠E=30°,∴∠EDF=60°,∴MD=BM÷tan60°=,∴CD=CM﹣MD=12﹣.故选B.【点睛】本题考查了解直角三角形,难度较大,解答此类题目的关键根据题意建立直角三角形利用所学的三角函数的关系进行解答.2、A【解析】
如图,延长GH交AD于点M,先证明△AHM≌△FHG,从而可得AM=FG=1,HM=HG,进而得DM=AD-AM=2,继而根据勾股定理求出GM的长即可求得答案.【详解】如图,延长GH交AD于点M,∵四边形ABCD、CEFG是矩形,∴AD=BC=3,CG=EF=3,FG=CE=1,∠CGF=90°,∠ADC=90°,∴DG=CG-CD=3-1=2,∠ADG=90°=∠CGF,∴AD//FG,∴∠HAM=∠HFG,∠AMH=∠FGH,又AH=FH,∴△AHM≌△FHG,∴AM=FG=1,HM=HG,∴DM=AD-AM=3-1=2,∴GM=,∵GM=HM+HG,∴GH=,故选A.【点睛】本题考查了矩形的性质,勾股定理,全等三角形的判定与性质,正确添加辅助线,熟练掌握相关知识是解题的关键.3、B【解析】
根据轴对称图形的定义和中心对称图形的定义逐一判断即可.【详解】A选项是轴对称图形,也是中心对称图形,故本选项不符合题意;B选项是轴对称图形,不是中心对称图形,故本选项符合题意;C选项是轴对称图形,也是中心对称图形,故本选项不符合题意;D选项是轴对称图形,也是中心对称图形,故本选项不符合题意.故选B.【点睛】此题考查的是轴对称图形和中心对称图形的识别,掌握轴对称图形的定义和中心对称图形的定义是解决此题的关键.4、A【解析】试题分析:由题意可得,甲的平均数为:(9+8+7+7+9)÷5=8;方差为:15乙的平均数为:(10+8+9+7+1)÷5=8;方差为:15∵0.8<2,∴选择甲射击运动员,故选A.考点:方差.5、D【解析】
根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.【详解】解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABC∽△EDC,∴DCAB即1.5AB解得:AB=6,故选:D.【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.6、C【解析】
根据两车同时出发,同向而行,所以点A即为甲、乙两地的距离;图中点B为y=0,即快慢两车的距离为0,所以B表示快慢两车相遇的时间;由图像可知慢车走300km,用了3小时,可求出慢车的速度,进而求出快车的速度;点C的横坐标表示快车走到丙地用的时间,根据快车与慢车的速度,可求出点C的坐标【详解】A、由图像分析得,点A即为甲、乙两地的距离,即甲、乙两地之间的距离为选项A是正确BC、由图像可知慢车走300km,用了3小时,则慢车的速度为100km/h,因为1h快车比慢车多走100km,故快车速度为200km/h,所以快车从甲地到丙地的时间=500200=2.5h,故选项B是正确的,快车速度是慢车速度的两倍,故选项C是错误的D、快车从甲地驶到丙地共用了2.5h,即点C的横坐标2.5,则慢车还剩0.5h才能到丙地,距离=0.5100=50km,故快车到达丙地时,慢车距丙地还有50km,选项D是正确的故正确答案为C【点睛】此题主要根据实际问题考查了一次函数的应用,解决此题的关键是根据函数图像,读懂题意,联系实际的变化,明确横轴和纵轴表示的意义7、C【解析】分析:根据众数的定义先求出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即可得出答案.详解:∵数据1,2,x,5,6的众数为6,∴x=6,把这些数从小到大排列为:1,2,5,6,6,最中间的数是5,则这组数据的中位数为5;故选C.点睛:本题考查了中位数的知识点,将一组数据按照从小到大的顺序排列,如果数据的个数为奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数为偶数,则中间两个数据的平均数就是这组数据的中位数.8、B【解析】
根据频率、频数的关系:频率=频数÷数据总数,可得频数=频率×数据总数.【详解】∵一个有100个数据的样本,落在某一小组内的频率是0.4,∴在这100个数据中,落在这一小组内的频数是:100×0.4=1.故选B.【点睛】本题考查了频率、频数与数据总数的关系:频数=频率×数据总数.9、D【解析】
按照最简二次根式的定义判断即可.【详解】解:因为12=1×22×2=22,所以12不是最简二次根式,而2【点睛】本题考查了最简二次根式的定义,判定一个二次根式是不是最简二次根式的方法,看是否同时满足最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式),同时满足的就是最简二次根式,否则就不是.10、D【解析】
根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】A、是整式的乘法,故A错误;B、等式不成立,故B错误;C、没把一个多项式转化成几个整式乘积的形式,故C错误;D、把一个多项式转化成几个整式乘积的形式,故D正确;故选:D.【点睛】此题考查因式分解的意义,解题关键在于掌握其定义二、填空题(每小题3分,共24分)11、3<x<1【解析】
解:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵AC=8,BD=14,∴AO=4,BO=7,∵AB=x,∴7﹣4<x<7+4,解得3<x<1.故答案为:3<x<1.12、【解析】
先计算二次根式的乘法,然后进行化简,最后合并即可.【详解】原式.故答案为:.【点睛】本题考查了二次根式的混合运算,掌握各种知识点的运算法则是解答本题的关键.13、1【解析】
根据众数的定义求出x,然后根据中位数的概念求解.【详解】解:∵数据4,x,1,9,12的众数为1,∴x=1,则数据重新排列为4,1,1,9,12,所以中位数为1,故答案为:1.【点睛】本题考查了众数和中位数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.14、x=﹣1.【解析】
直接根据函数图象与x轴的交点进行解答即可.【详解】∵一次函数y=mx+n与x轴的交点为(﹣1,0),∴当mx+n=0时,x=﹣1.故答案为:x=﹣1.【点睛】本题考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.15、1【解析】
利用待定系数法求后8分钟的解析式,再求函数值.【详解】解:根据题意知:后8分钟水量y(单位:L)与时间x(单位:min)之间的关系满足一次函数关系,设y=kx+b
当x=4,y=20
当x=12,y=30
∴∴
∴后8分钟水量y(单位:L)与时间x(单位:min)之间的关系满足一次函数关系y=1.1x+15
当x=8时,y=1.
故答案为:1.【点睛】本题考查利用待定系数法求一次函数解析式,并根据自变量取值,再求函数值.求出解析式是解题关键.16、众数【解析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然想要了解哪种女鞋的销售量最大,那么应该关注那种尺码销的最多,故值得关注的是众数.【详解】由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故答案为众数.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.17、【解析】
直接利用菱形的性质得出其边长以及对角线垂直,进而利用直角三角形的性质得出EO的长.【详解】解:∵菱形ABCD的周长为12,∴AD=3,∠AOD=90°,∵E为AD边中点,∴OE=AD=.故答案为:.【点睛】本题主要考查了菱形的性质以及直角三角形的性质(直角三角形斜边上的中线等于斜边的一半),正确掌握直角三角形的性质是解题关键.18、.【解析】
试题分析:画树状图为:共有9种等可能的结果数,其中两辆汽车都直行的结果数为1,所以则两辆汽车都直行的概率为,故答案为.考点:列表法与树状图法.三、解答题(共66分)19、﹣2≤x<1,见解析.【解析】
先分别求出不等式的解集,再在数轴上表示出来即可【详解】解:,解不等式①,得x<1,解不等式②,得x≥﹣2,所以原不等式组的加减为﹣2≤x<1.把不等式的解集在数轴上表示为:【点睛】此题考查解不等式组和在数轴上表示不等式的解集,掌握运算法则是解题关键20、(1);(2)m>1且m≠2.【解析】
(1)根据分式混合运算顺序和运算法则化简原式,再将a2+2a-1=1,即a2+2a=1整体代入可得;
(2)解分式方程得出x=m-1,由分式方程的解为正数得m-1>1且m-1≠2,解之即可.【详解】(1)原式=÷=•==,当a2+2a﹣1=1,即a2+2a=1时,原式==.(2)解方程=+1,得:x=m﹣1,根据题意知m﹣1>1且m﹣1≠2,解得:m>1且m≠2.【点睛】本题考查分式的混合运算、解分式方程,解题关键是熟练掌握分式的混合运算顺序和运算法则.21、见解析.【解析】
利用全等三角形的性质证明AB=AD即可解决问题.【详解】∵ABCD是平行四边形,∴∠B=∠D∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,在ΔABE和ΔADF中,∠B=∠DBE=DF∴ΔABE≅ΔADF∴AB=AD∴▱ABCD是菱形.【点睛】本题考查了菱形的判定、全等三角形的判定和性质等知识,熟练掌握相关的性质与定理是解题的关键.22、(1)8,20(2)见解析(3)330人【解析】
(1)根据频数分布直方图可知a的值,然后根据题目中随机抽取该年级50名学生进行测试,可以求得b的值;
(2)根据(1)中b的值可以将频数分布直方图补充完整;
(3)根据频数分布表中的数据,可以算出该年级学生立定跳远成绩优秀的学生有多少人.【详解】(1)由频数分布直方图可知,a=8,
b=50-8-12-10=20,
故答案为:8,20;
(2)由(1)知,b=20,
补全的频数分布直方图如图所示;(3)550×=330(人),
答:该年级学生立定跳远成绩优秀的学生有330人.【点睛】本题考查频数分布表、频数分布直方图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23、(1)详见解析;(2)正方形的边长为8cm.【解析】
(1)根据两角对应相等的两个三角形相似即可证明;
(2)利用相似三角形的性质,构建方程即可解决问题;【详解】(1)证明:∵四边形EFMN是正方形,∴EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴△AEF∽△ABC.(2)解:设正方形EFMN的边长为xcm.∴AP=AD-x=12-x(cm)∵△AEF∽△ABC,AD⊥BC,∴,∴,∴x=8,∴正方形的边长为8cm.【点睛】本题考查相似三角形的判定和性质、正方形的性质等知识,解题的关键是熟练掌握基本知识.24、证明见解析【解析】
直接连接BD,交AC于点O,利用平行四边形的性质得出OA=OC,OB=OD,进而得出四边形EBFD是平行四边形求出答案即可.【详解】证明:连接BD,交AC于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AF=CE,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重庆三峡学院《可持续发展与绿色教育》2022-2023学年第一学期期末试卷
- 重庆人文科技学院《移动终端软件开发》2021-2022学年期末试卷
- 重庆人文科技学院《现代教育技术应用》2021-2022学年第一学期期末试卷
- 重庆人文科技学院《图画书创作》2023-2024学年第一学期期末试卷
- 重庆人文科技学院《风景园林设计初步》2022-2023学年第一学期期末试卷
- 重庆人文科技学院《传染病护理学》2022-2023学年第一学期期末试卷
- 重庆财经学院《智能科学与技术专业综合实训》2022-2023学年期末试卷
- 2024北京海淀七年级(上)期中语文(教师版)
- 2024北京二中八年级(上)期中地理(教师版)
- 重庆人文科技学院《商务智能》2022-2023学年第一学期期末试卷
- 中华人民共和国能源法
- 2024-2030年中国冷库及冷风机行业竞争趋势及未来发展策略分析报告
- 华为近三年财务分析报告范文
- 《义务教育数学课程标准(2022年版)》初中内容解读
- 2024浙江省执业药师继续教育答案-中医虚症辨证用药
- 2024年第九届学宪法、讲宪法题库(含答案)
- 2024年广东省公务员录用考试《行测》试题及答案解析
- 浙江省杭州市2025届高三上学期一模英语试题 含答案
- 2025届高三化学一轮复习 原电池 化学电源(第一课时)课件
- 2024-2030年全球学前教育行业经营规模研究与投资模式分析研究报告
- 《算法设计与分析基础》(Python语言描述) 课件 第4章分治法2
评论
0/150
提交评论