版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列给出的四个点中,不在直线y=2x-3上的是()A.(1,-1) B.(0,-3) C.(2,1) D.(-1,5)2.如图,将一个矩形纸片ABCD,沿着BE折叠,使C、D两点分别落在点、处若,则的度数为A. B. C. D.3.在下列图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.一次数学测试中,小明所在小组的5个同学的成绩(单位:分)分别是:90、91、88、90、97,则这组数据的中位数是()A.88B.90C.90.5D.915.如图,在平面直角坐标系xOy中,点P(,5)关于y轴的对称点的坐标为()A.(,) B.(1,5) C.(1.) D.(5,)6.下列四个图形中,不能推出∠2与∠1相等的是()A. B.C. D.7.如图,四边形ABCD为矩形,依据尺规作图的痕迹,∠α与∠β的度数之间的关系为()A.β=180-α B.β=180°- C.β=90°-α D.β=90°-8.下列各组数中,能作为直角三角形的三边长的是A.1,2,3 B.1,, C.3,5,5 D.,,9.如图,在平面直角坐标系xOy中,点A、C、F在坐标轴上,E是OA的中点,四边形AOCB是矩形,四边形BDEF是正方形,若点C的坐标为(3,0),则点D的坐标为()A.(1,2.5) B.(1,1+) C.(1,3) D.(﹣1,1+)10.如图,菱形中,,点是边上一点,占在上,下列选项中不正确的是()A.若,则B.若,则C.若,则的周长最小值为D.若,则11.王老师在讲“实数”时画了一个图(如图),即“以数轴的单位长度的线段为边作一个正方形,然后以表示-1的点为圆心,正方形的对角线长为半径画弧交数轴于点A”.则数轴上点A所表示的数是()A.-1 B.-+1 C. D.-12.已知是一元二次方程x2x10较大的根,则下面对的估计正确的是()A.01B.11.5C.1.52D.23二、填空题(每题4分,共24分)13.如图,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是_____________cm.14.已知分式方程+=,设,那么原方程可以变形为__________15.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n个矩形的面积为_____.16.若ab=1317.已知直角三角形中,分别以为边作三个正方形,其面积分别为,则__________(填“”,“”或“”)18.如图,将三角形纸片的一角折叠,使点B落在AC边上的F处,折痕为DE.已知AB=AC=3,BC=4,若以点E,F,C为顶点的三角形与△ABC相似,那么BE的长是_______.三、解答题(共78分)19.(8分)(1)计算(2)计算.20.(8分)八年级班一次数学测验,老师进行统计分析时,各分数段的人数如图所示(分数为整数,满分分).请观察图形,回答下列问题:(1)该班有____名学生:(2)请估算这次测验的平均成绩.21.(8分)如图,在平行四边形中,对角线相交于点,于点.(1)用尺规作于点(要求保留作图痕迹,不要求写作法与证明);(2)求证:.22.(10分)如图,,平分交于点,于点,交于点,连接,求证:四边形是菱形.23.(10分)在中,,,点是的中点,点是射线上一点,于点,且,连接,作于点,交直线于点.(1)如图(1),当点在线段上时,判断和的数量关系,并加以证明;(2)如图(2),当点在线段的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当和面积相等时,点与点之间的距离;如果不成立,请说明理由.24.(10分)下表是随机抽取的某公司部分员工的月收入资料.(1)请计算样本的平均数和中位数;(2)甲乙两人分别用样本平均数和中位数来估计推断公司全体员工月收入水平,请你写出甲乙两人的推断结论;并指出谁的推断比较科学合理,能直实地反映公司全体员工月收入水平。25.(12分)计算:(48-418)-(313-226.解下列方程:
参考答案一、选择题(每题4分,共48分)1、D【解析】只需把每个点的横坐标即x的值分别代入y=2x-3,计算出对应的y值,然后与对应的纵坐标比较即可A、当x=1时,y=-1,(1,-1)在直线y=2x-3上;B、当x=0时,y=-3,(0,-3)在直线y=2x-3上;C、当x=2时,y=1,(2,1)在直线y=2x-3上;D、当x=-1时,y=-5,(-1,5)不在直线y=2x-3上.故选D.2、B【解析】
根据折叠前后对应角相等即可得出答案.【详解】解:设∠ABE=x,
根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x,
所以50°+x+x=90°,
解得x=20°.故选B.【点睛】本题考核知识点:轴对称.解题关键点:理解折叠的意义.3、C【解析】
根据轴对称图形与中心对称图形的概念进行判断即可.【详解】A.不是轴对称图形,是中心对称图形,不合题意;B.是轴对称图形,不是中心对称图形,不合题意;C.是轴对称图形,也是中心对称图形,符合题意;D.不是轴对称图形,是中心对称图形,不合题意,故选C.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、B【解析】
先将题中的数据按照从小到大的顺序排列,然后根据中位数的概念求解即可.【详解】将小明所在小组的5个同学的成绩重新排列为:88、90、90、91、97,所以这组数据的中位数为90分,故选B.【点睛】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5、B【解析】根据关于纵轴的对称点:纵坐标相同,横坐标变成相反数,∴点P关于y轴的对称点的坐标是(1,5),故选B6、B【解析】
根据平行线的性质以及对顶角相等的性质进行判断.【详解】解:A、∵∠1和∠2互为对顶角,∴∠1=∠2,故本选项错误;B、∵a∥b,∴∠1+∠2=180°(两直线平行,同旁内角互补),不能判断∠1=∠2,故本选项正确;C、∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故本选项错误;D、如图,∵a∥b,∴∠1=∠3(两直线平行,同位角相等),∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项错误;故选B.【点睛】本题考查了平行线的性质,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.7、D【解析】
如图,根据题意得∠DAC=∠α,∠EAO=∠α,∠AEO=∠β,∠EOA=90°,再根据三角形内角和定理可得β=90°-.【详解】如图,∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠α由作图痕迹可得AE平分∠DAC,EO⊥AC∴∠EAO=∠α,∠EOA=90°又∠AEO=∠β,∠EAO+∠AOE+∠AEO=180°,∴∠α+∠β+90°=180°,∴β=90°-故选D.【点睛】本题考查了矩形的性质,角平分线以及线段垂直平分线的性质,熟练掌握和运用相关的知识是解题的关键.8、B【解析】
如果三角形的三边长a,b,c满足,那么这个三角形是直角三角形.【详解】A.12+22≠32,不能构成直角三角形;B.12+()2=()2,能构成直角三角形;C.32+52≠52,不能构成直角三角形;D.≠+()2,不能构成直角三角形.故选:B【点睛】本题考核知识点:勾股定理逆定理.解题关键点:理解勾股定理逆定理.9、C【解析】
过D作DH⊥y轴于H,根据矩形和正方形的性质得到AO=BC,DE=EF=BF,∠AOC=∠DEF=∠BFE=∠BCF=90°,根据全等三角形的性质即可得到结论.【详解】过D作DH⊥y轴于H,∵四边形AOCB是矩形,四边形BDEF是正方形,∴AO=BC,DE=EF=BF,∠AOC=∠DEF=∠BFE=∠BCF=90°,∴∠OEF+∠EFO=∠BFC+∠EFO=90°,∴∠OEF=∠BFO,∴△EOF≌△FCB(ASA),∴BC=OF,OE=CF,∴AO=OF,∵E是OA的中点,∴OE=OA=OF=CF,∵点C的坐标为(3,0),∴OC=3,∴OF=OA=2,AE=OE=CF=1,同理△DHE≌△EOF(ASA),∴DH=OE=1,HE=OF=2,∴OH=2,∴点D的坐标为(1,3),故选:C.【点睛】本题考查了正方形的性质,坐标与图形性质,矩形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.10、D【解析】
A.正确,只要证明即可;B.正确,只要证明进而得到是等边三角形,进而得到结论;C.正确,只要证明得出是等边三角形,因为的周长为,所以等边三角形的边长最小时,的周长最小,只要求出的边长最小值即可;D.错误,当时,,由此即可判断.【详解】A正确,理由如下:都是等边三角形,B正确,理由如下:是等边三角形,同理是等边三角形,C正确,理由如下:是等边三角形,的周长为:,等边三角形边长最小时,的周长最小,当时,DE最小为,的周长最小值为.D错误,当时,,此时时变化的不是定值,故错误.故选D.【点睛】本题主要考查全等的判定的同时,结合等边三角形的性质,涉及到最值问题,仔细分析图形,明确图形中的全等三角形是解决问题的关键.11、A【解析】
先根据勾股定理求出正方形的对角线长,再根据两点间的距离公式为:两点间的距离=较大的数-较小的数,便可求出-1和A之间的距离,进而可求出点A表示的数.【详解】数轴上正方形的对角线长为:,由图中可知-1和A之间的距离为.∴点A表示的数是-1.故选A.【点睛】本题考查的是勾股定理及两点间的距离公式,本题需注意:知道数轴上两点间的距离,求较小的数,就用较大的数减去两点间的距离.12、C【解析】
先解一元二次方程方程,再求出5的范围,即可得出答案.【详解】解:解方程x2-x-1=0得:x=1±∵α是x2-x-1=0较大的根,∴α=1+∵2<5<3,∴3<1+5<4,∴32<1+5故选C.【点睛】本题考查解一元二次方程和估算无理数大小的知识,正确的求解方程和合理的估算是解题的关键.二、填空题(每题4分,共24分)13、10【解析】
本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.【详解】如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.连接OC,交AB于D点.连接OA.∵尺的对边平行,光盘与外边缘相切,∴OC⊥AB.∴AD=4cm.设半径为Rcm,则R2=42+(R−2)2,解得R=5,∴该光盘的直径是10cm.故答案为:10.【点睛】此题考查了切线的性质及垂径定理,建立数学模型是关键.14、=【解析】【分析】运用整体换元法可得到结果.【详解】设,则分式方程+=,可以变形为=故答案为:=【点睛】本题考核知识点:分式方程.解题关键点:掌握整体换元方法.15、()n-1【解析】试题分析:已知第一个矩形的面积为1;第二个矩形的面积为原来的()2-1=;第三个矩形的面积是()3-1=;…故第n个矩形的面积为:.考点:1.矩形的性质;2.菱形的性质.16、-2【解析】试题解析:∵a∴b=3a∴a+ba-b17、【解析】
由勾股定理得出AC2+BC2=AB2,得出S1+S2=S3,可得出结果.【详解】解:∵∠ACB=90°,
∴AC2+BC2=AB2,
∴S1+S2=S3,故答案为:=.【点睛】本题考查了勾股定理、正方形面积的计算;熟练掌握勾股定理,由勾股定理得出正方形的面积关系是解决问题的关键.18、或1.【解析】
由于折叠前后的图形不变,要考虑△B′FC与△ABC相似时的对应情况,分两种情况讨论.【详解】解:根据△B′FC与△ABC相似时的对应关系,有两种情况:①△B′FC∽△ABC时,,又∵AB=AC=3,BC=4,B′F=BF,∴,解得BF=;②△B′CF∽△BCA时,,AB=AC=3,BC=4,B′F=CF,BF=B′F,而BF+FC=4,即1BF=4,解得BF=1.故BF的长度是或1.故答案为:或1.【点睛】本题考查相似三角形的性质.三、解答题(共78分)19、(1)(2)1【解析】
(1)先进行分母有理化,然后进行加减运算.(2)根据乘法分配律及二次根式的性质即可求解.【详解】(1)====(2)=+=3+9=1.【点睛】本题考查了二次根式的混合运算,熟练运用二次根式混合运算法则是解题的关键.20、(1)60(2)61分【解析】
(1)把各分数段的人数相加即可.(2)用总分数除以总人数即可求出平均分.【详解】(1)(名)故该班有60名学生.(2)(分)故这次测验的平均成绩为61分.【点睛】本题考查了条形统计图的问题,掌握条形统计图的性质、平均数的算法是解题的关键.21、(1)见解析;(2)见解析.【解析】
(1)以C为圆心,大于AE长为半径画弧,分别交BD于点M,N两点,再分别以M,N为圆心,以大于MN为半径画弧,交于点G,连接CG并延长,交BD于点F,即可得CF⊥BD于点F;(2)由AE⊥BD于点E,CF⊥BD于点F,可得∠AEO=∠CFO=90°,又由在平行四边形ABCD中,OA=OC,即可利用AAS,判定△AOE≌△COF,继而证得结论【详解】解:(1)如图,为所求;(2)∵四边形是平行四边形,∴∵于点,于点,∴在和中,∴≌()∴【点睛】本题考查了平行四边形的性质,以及基本作图:过直线外一点做已知直线的垂线段,掌握平行四边形的性质以及三角形全等的判定和过直线外一点做已知直线的垂线段,是解题的关键.22、见解析【解析】
根据题意首先利用ASA证明,再得出四边形是平行四边形,再利用四边相等来证明四边形是菱形即可.【详解】证明:∵,∴,∵平分交于点,∴,∴,∴,∵,∴,在和中,,,∴,∴,∴四边形是平行四边形,∵,∴四边形是菱形【点睛】此题考查全等三角形的判定与性质,平行四边形的判定,菱形的判定,解题关键在于利用平行线的性质来求证.23、(1),证明见解析;(2)依然成立,点与点之间的距离为.理由见解析.【解析】
(1)做辅助线,通过已知条件证得与是等腰直角三角形.证出,利用全等的性质即可得到.(2)设AH,DF交于点G,可根据ASA证明△FCE≌△HFG,从而得到,当和均为等腰直角三角形当他们面积相等时,.利用勾股定理可以求DE、CE的长,即可求出CE的长,即可求得点与点之间的距离.【详解】(1)证明:延长交于点∵在中,,,∴∵于点,且,∴,与是等腰直角三角形.∴,,,∴,∵点是的中点,∴,∴∴∵于点,∴,∴∴∴∴;(2)依然成立理由:设AH,DF交于点G,由题意可得出:DF=DE,∴∠DFE=∠DEF=45°,∵AC=BC,∴∠A=∠CBA=45°,∵DF∥BC,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D为AC的中点,DF∥BC,∴DG=BC,DC=AC,∴DG=DC,∴EC=GF,∵∠DFC=∠FCB,∴∠GFH=∠FCE,在△FCE和△HFG中,∴△FCE≌△HFG(ASA),∴HF=FC.由(1)可知和均为等腰直角三角形当他们面积相等时,.∴∴∴点与点之间的距离为.【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的性质以及勾股定理,学会利用全等和等腰三角形的性质,借助勾股定理解决问题.24、(1)平均数:6150元;中位数:3200元;(2)甲:由样本平均数为6150元,估计全体员工的月平均收入大约为6150元;乙:由样本中位数为3200元,估计全体大约有一半的员工月收入超过3200元,有一半员工月收入不足3200元,乙推断比较科学合理.【解析】
(1)要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重庆三峡学院《可持续发展与绿色教育》2022-2023学年第一学期期末试卷
- 重庆人文科技学院《移动终端软件开发》2021-2022学年期末试卷
- 重庆人文科技学院《现代教育技术应用》2021-2022学年第一学期期末试卷
- 重庆人文科技学院《图画书创作》2023-2024学年第一学期期末试卷
- 重庆人文科技学院《风景园林设计初步》2022-2023学年第一学期期末试卷
- 重庆人文科技学院《传染病护理学》2022-2023学年第一学期期末试卷
- 重庆财经学院《智能科学与技术专业综合实训》2022-2023学年期末试卷
- 2024北京海淀七年级(上)期中语文(教师版)
- 2024北京二中八年级(上)期中地理(教师版)
- 重庆人文科技学院《商务智能》2022-2023学年第一学期期末试卷
- 英语启蒙入门课件
- 如何当好揽投部站经理课件
- NB∕T 10731-2021 煤矿井下防水密闭墙设计施工及验收规范
- 反求工程基础课件
- 中式烹调技艺烹饪专业基础试题及其参考答案
- 【培训课件】用电安全知识
- 超星学习通垃圾分类知识章节测试题(含答案)
- 慢性阻塞性肺疾病(-COPD)的药物治疗及合理用药课件
- 人工智能技术介绍完整版人工智能概述、围棋课件
- 事故油池施工方案交底
- 六年级上册美术课件-10 流动的风景线 |浙美版(2014秋)(共13张PPT)
评论
0/150
提交评论