2023年辽宁省大石桥市周家镇中学八年级数学第二学期期末考试试题含解析_第1页
2023年辽宁省大石桥市周家镇中学八年级数学第二学期期末考试试题含解析_第2页
2023年辽宁省大石桥市周家镇中学八年级数学第二学期期末考试试题含解析_第3页
2023年辽宁省大石桥市周家镇中学八年级数学第二学期期末考试试题含解析_第4页
2023年辽宁省大石桥市周家镇中学八年级数学第二学期期末考试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列二次根式中,属于最简二次根式的是(

)A. B. C. D.2.如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF长为()A.2 B.3 C. D.3.下列各式由左到右的变形中,属于分解因式的是()A. B.C. D.4.下列一元二次方程没有实数根的是()A.+2x+1=0 B.+x-2=0 C.+1=0 D.﹣2x﹣1=05.在平面直角坐标系中,下列函数的图象经过原点的是()A. B. C. D.6.已知点P(a,m),Q(b,n)是反比例函数y图象上两个不同的点,则下列说法不正确的是()A.am=2 B.若a+b=0,则m+n=0C.若b=3a,则nm D.若a<b,则m>n7.12名同学参加了学校组织的经典诵读比赛的个人赛(12名同学成绩各不相同),按成绩取前6名进入决赛,如果小明知道自己的成绩后,要判断自己能否进入决赛,他需要知道这12名同学成绩的()A.众数 B.方差 C.中位数 D.平均数8.下列二次根式中,最简二次根式为A. B. C. D.9.下列长度的四根木棒,能与长度分别为2cm和5cm的木棒构成三角形的是()A.3 B.4 C.7 D.1010.如图,一次函数y=﹣x+4的图象与两坐标轴分别交于A、B两点,点C是线段AB上一动点(不与点A、B重合),过点C分别作CD、CE垂直于x轴、y轴于点D、E,当点C从点A出发向点B运动时,矩形CDOE的周长()A.逐渐变大 B.不变C.逐渐变小 D.先变小后变大二、填空题(每小题3分,共24分)11.若代数式有意义,则的取值范围为__________.12.函数:y=1x+113.某市某活动中心组织了一次少年跳绳比赛,各年龄组的参赛人数如表所示:年龄组12岁13岁14岁15岁参赛人数5191313则全体参赛选手年龄的中位数是________.14.对于一次函数y=(a+2)x+1,若y随x的增大而增大,则a的取值范围________15.如图,在中,,,,则__________.16.已知:一组数据,,,,的平均数是22,方差是13,那么另一组数据,,,,的方差是__________.17.直角三角形的三边长分别为、、,若,,则__________.18.“a的3倍与b的差不超过5”用不等式表示为__________.三、解答题(共66分)19.(10分)随着车辆的增加,交通违规的现象越来越严重,交警对人民路某雷达测速区检测到的一组汽车的时速数据进行整理(速度在30﹣40含起点值30,不含终点值40),得到其频数及频率如表:数据段频数频率30﹣40100.0540﹣5036c50﹣60a0.3960﹣70bd70﹣80200.10总计2001(1)表中a、b、c、d分别为:a=;b=;c=;d=(2)补全频数分布直方图;(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?20.(6分)2019年4月25日至27日,第二届“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议。我国准备将地的茶叶1000吨和地的茶叶500吨销往“一带一路”沿线的地和地,地和地对茶叶需求分别为900吨和600吨,已知从、两地运茶叶到、两地的运费(元/吨)如下表所示,设地运到地的茶叶为吨,35403045(1)用含的代数式填空:地运往地的茶叶吨数为___________,地运往地的茶叶吨数为___________,地运往地的茶叶吨数为___________.(2)用含(吨)的代数式表示总运费(元),并直接写出自变量的取值范围;(3)求最低总运费,并说明总运费最低时的运送方案.21.(6分)一个不透明的袋子里装有黑白两种颜色的球其40只,这些球除颜色外都相同.小明从袋子中随机摸一个球,记下颜色后放回,不断重复,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:(1)摸到黑球的频率会接近(精确到0.1);(2)估计袋中黑球的个数为只:(3)若小明又将一些相同的黑球放进了这个不透明的袋子里,然后再次进行摸球试验,当重复大量试验后,发现黑球的频率稳定在0.6左右,则小明后来放进了个黑球.22.(8分)某公司招聘一名员工,现有甲、乙两人竞聘,公司聘请了3位专家和4位群众代表组成评审组,评审组对两人竟聘演讲进行现场打分,记分采用100分制,其得分如下表:评委(序号)1234567甲(得分)89949387959287乙(得分)87899195949689(1)甲、乙两位竞聘者得分的中位数分别是多少(2)计算甲、乙两位应聘者平均得分,从平均得分看应该录用谁(结果保留一位小数)(3)现知道1、2、3号评委为专家评委,4、5、6、7号评委为群众评委,如果对专家评委组与群众评委组的平均分数分别赋子适当的权,那么对专家评委组赋的权至少为多少时,甲的平均得分比乙的平均得分多0.5分及以上23.(8分)如图,在ABCD中,AD∥BC,AC=BC=4,∠D=90°,M,N分别是AB、DC的中点,过B作BE⊥AC交射线AD于点E,BE与AC交于点F.(1)当∠ACB=30°时,求MN的长:(2)设线段CD=x,四边形ABCD的面积为y,求y与x的函数关系式及其定义域;(3)联结CE,当CE=AB时,求四边形ABCE的面积.24.(8分)(1)如图,纸片▱ABCD中,AD=5,S▱ABCD=15.过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为()A.平行四边形B.菱形C.矩形D.正方形(2)如图,在(1)中的四边形纸片AEE/D中,在EE/上取一点F,使EF=4,剪下△AEF,将它平移至△DE/F/的位置,拼成四边形AFF/D.①求证:四边形AFF'D是菱形;②求四边形AFF'D的两条对角线的长.图1图225.(10分)为积极响应“弘扬传统文化”的号召,万州区某中学举行了一次中学生诗词大赛活动.小何同学对他所在八年级一班参加诗词大赛活动同学的成绩进行了整理,成绩分别100分、90分、80分、70分,并绘制出如下的统计图.请根据以上提供的信息,解答下列问题:(1)该校八年级(1)班参加诗词大赛成绩的众数为______分;并补全条形统计图.(2)求该校八年级(1)班参加诗词大赛同学成绩的平均数;(3)结合平时成绩、期中成绩和班级预选成绩(如下表),年级拟从该班小何和小王的两位同学中选一名学生参加区级决赛,按的比例计算两位同学的最终得分,请你根据计算结果确定选谁参加区级决赛.学生姓名平时成绩期中成绩预选成绩小何8090100小王901009026.(10分)某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成,根据两队每天的工程费用和每天完成的工程量可知,若由两队合做6天可以完成,共需工程费用385200元;若单独完成,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元。(1)求甲、乙独做各需多少天?(2)若从节省资金的角度,应该选择哪个工程队?

参考答案一、选择题(每小题3分,共30分)1、C【解析】

满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.【详解】A、=,故A不是;B、=,故B不是;C、,是;D、=,故D不是.故选C【点睛】考查了最简二次根式的概念,熟练掌握最简二次根式所需要满足的条件是解题的关键.2、A【解析】

如图,延长FD到G,使DG=BE,连接CG、EF,证△GCF≌△ECF,得到GF=EF,再利用勾股定理计算即可.【详解】解:如图,延长FD到G,使DG=BE,连接CG、EF∵四边形ABCD为正方形,在△BCE与△DCG中,∵CB=CD,∠CBE=∠CDG,BE=DG,∴△BCE≌△DCG(SAS)∴CG=CE,∠DCG=∠BCE∴∠GCF=45°在△GCF与△ECF中∵GC=EC,∠GCF=∠ECF,CF=CF∴△GCF≌△ECF(SAS)∴GF=EF∵CE=,CB=6∴BE===3∴AE=3,设AF=x,则DF=6﹣x,GF=3+(6﹣x)=9﹣x∴EF==∴∴x=4,即AF=4∴GF=5∴DF=2∴CF===故选A.【点睛】本题考查1.全等三角形的判定与性质;2.勾股定理;3.正方形的性质,作出辅助线构造全等三角形是解题的关键.3、C【解析】

根据题中“属于分解因式的是”可知,本题考查多项式的因式分解的判断,根据因式分解的概念,运用因式分解是把多项式分解成若干个整式相乘的形式,进行分析判断.【详解】A.属于整式乘法的变形.B.不符合因式分解概念中若干个整式相乘的形式.C.运用提取公因式法,把多项式分解成了5x与(2x-1)两个整式相乘的形式.D.不符合因式分解概念中若干个整式相乘的形式.故应选C【点睛】本题解题关键:理解因式分解的概念是把多项式分解成若干个整式相乘的形式,注意的是相乘的形式.4、C【解析】

分别计算每个方程中根的判别式△(b2-4ac)的值,找出△<0的方程即可解答.【详解】选项A,△=b2-4ac=22-4×1×1=0,方程有两个相等的实数根;选项B,△=b2-4ac=12-4×1×(-2)=9>0,方程有两个不相等的实数根;选项C,△=b2-4ac=0-4×1×1=-4<0,方程没有实数根;选项D,△=b2-4ac=(-2)2-4×3×(-1)=16>0,方程有两个不相等的实数根.故选C.【点睛】本题考查了一元二次方程根的情况与判别式△的关系,一元二次方程根的情况与判别式△的关系为:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5、C【解析】

根据函数图象过原点,则必须满足(0,0)点在图象上,代入计算看是否等式成立即可.【详解】解:要使图象过原点,则必须满足(0,0)在图象上代入计算可得:A代入(0,0)可得:,明显等式不成立,故A的曲线不过原点;B为反比例函数肯定不过原点,故B的曲线不过原点;C代入(0,0)可得:,明显等式成立,故C的直线线过原点;D代入(0,0)可得:,明显等式不成立,故D的直线不过原点;故选C.【点睛】本题主要考查点是否在图象上,如果点在图象上,则必须满足图象所在的解析式.6、D【解析】

根据题意得:am=bn=2,将B,C选项代入可判断,根据反比例函数图象的性质可直接判断D是错误的.【详解】∵点P(a,m),Q(b,n)是反比例函数y图象上两个不同的点,∴am=bn=2,若a+b=0,则a=﹣b,∴﹣bm=bn,∴﹣m=n即m+n=0,若b=3a,∴am=3an,∴nm,故A,B,C正确,若a<0<b,则m<0,n>0,∴m<n,故D是错误的,故选D.【点睛】本题考查了反比例函数图象上点的坐标特征,关键是灵活运用反比例函数图象的性质解决问题.7、C【解析】

参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩与全部成绩的中位数的大小即可.【详解】由于总共有12个人,且他们的分数互不相同,要判断是否进入前6名,只要把自己的成绩与中位数进行大小比较,故应知道中位数的多少,故选C.【点睛】本题考查了统计量的选择,包括平均数、中位数、众数、方差等,正确理解和掌握各自的意义是解题的关键.8、C【解析】

化简得出结果,根据最简二次根式的概念即可做出判断.【详解】解:、,故不是最简二次根式;、,故不是最简二次根式;、是最简二次根式;、,故不是最简二次根式。故选:.【点睛】此题考查了最简二次根式,熟练掌握二次根式的化简公式是解本题的关键.9、B【解析】5-2=3,5+2=7,只有4在这两个数之间,故能构成三角形的只有B选项的木棒,故选B.点睛:本题主要考查三角形三边的关系,能正确地应用“两边之和大于第三边,两边之差小于第三边”是解题的关键.10、B【解析】

根据一次函数图象上点的坐标特征可设出点C的坐标为(m,-m+4)(0<m<4),根据矩形的周长公式即可得出C矩形CDOE=1,此题得解.【详解】解:设点C的坐标为(m,-m+4)(0<m<4),则CE=m,CD=-m+4,∴C矩形CDOE=2(CE+CD)=1.故选B.【点睛】本题考查了一次函数图象上点的坐标特征以及矩形的性质,根据一次函数图象上点的坐标特征设出点C的坐标是解题的关键.二、填空题(每小题3分,共24分)11、且.【解析】

根据二次根式和分式有意义的条件进行解答即可.【详解】解:∵代数式有意义,∴x≥0,x-1≠0,解得x≥0且x≠1.故答案为x≥0且x≠1.【点睛】本题考查了二次根式和分式有意义的条件,二次根式的被开方数为非负数,分式的分母不为零.12、x【解析】

求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使1x+1在实数范围内有意义,必须x13、1【解析】

根据中位数的定义来求解即可,中位数是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据.【详解】解:本次比赛一共有:5+19+13+13=50人,∴中位数是第25和第26人的年龄的平均数,∵第25人和第26人的年龄均为1岁,∴全体参赛选手的年龄的中位数为1岁.故答案为1.【点睛】中位数的定义是本题的考点,熟练掌握其概念是解题的关键.14、a>-1【解析】

一次函数y=kx+b,当k>0时,y随x的增大而增大.据此列式解答即可.【详解】解:根据一次函数的性质,对于y=(a+1)x+1,

当a+1>0时,即a>-1时,y随x的增大而增大.

故答案是a>-1.【点睛】本题考查了一次函数的性质.一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.15、30.【解析】

利用勾股逆定理推出∠C=90°,再利用三角形的面积公式,进行计算即可.【详解】解:∵,,又∵∴∴∠C=90°∴故答案为:30【点睛】本题考查了勾股逆定理以及三角形的面积公式,掌握勾股定理是解题的关键.16、1.【解析】

根据平均数,方差的公式进行计算.【详解】解:依题意,得==22,∴=110,∴3a-2,3b-2,3c-2,3d-2,3e-2的平均数为==×(3×110-2×5)=64,∵数据a,b,c,d,e的方差13,S2=[(a-22)2+(b-22)2+(c-22)2+(d-22)2+(e-22)2]=13,∴数据3a-2,3b-2,3c-2,3d-2,3e-2方差S′2=[(3a-2-64)2+(3b-2-64)2+(3c-2-64)2+(3d-2-64)2+(3e-2-64)2]=[(a-22)2+(b-22)2+(c-22)2+(d-22)2+(e-22)2]×9=13×9=1.故答案为:1.【点睛】本题考查了平均数、方差的计算.关键是熟悉计算公式,会将所求式子变形,再整体代入.17、或5【解析】

根据斜边分类讨论,然后利用勾股定理分别求出c的值即可.【详解】解:①若b是斜边长根据勾股定理可得:②若c是斜边长根据勾股定理可得:综上所述:或5故答案为:或5【点睛】此题考查的是勾股定理,掌握用勾股定理解直角三角形和分类讨论的数学思想是解决此题的关键.18、【解析】

根据“a的3倍与b的差不超过5”,则.【详解】解:根据题意可得出:;故答案为:【点睛】此题主要考查了由实际问题抽象出一元一次不等式,注意不大于即为小于等于.三、解答题(共66分)19、(1)78;1;0.18;0.28;(2)见解析;(3)违章车辆共有76(辆).【解析】

(1)根据第一组的频数是10,对应的频率是0.05即可求得整理的车辆总数,然后根据百分比的意义求解;(2)根据(1)的结果即可补全直方图;(3)求得最后两组的和即可.【详解】(1)整理的车辆总数是:10÷0.05=200(辆),则a=200×0.39=78,c0.18;d=1﹣0.18﹣0.39﹣0.10=0.28,b=200×0.28=1.故答案为:78;1;0.18;0.28;(2)如图:;(3)违章车辆共有1+20=76(辆).【点睛】本题考查了读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20、(1),,;(2);(3)由地运往地400吨,运往地600吨;由地运往地500吨时运费最低【解析】

(1)从A地运往C地x吨,A地有1000吨,所以只能运往D地(1000-x)吨;C地需要900吨,那么B地运往C地(900-x),D地需要600吨,那么运往D(x-400)吨;(2)根据总运费=A地运往C地运费+A地运往D地运费+B地运往C地运费+B地运往D地运费代入数值或字母可得;(3)根据(2)中得到的一次函数关系式,结合函数的性质和取值范围确定总运费最低方案。【详解】(1),,(2)()(3)∵,∴随的增大而增大。∵∴当时,最小.∴由地运往地400吨,运往地600吨;由地运往地500吨时运费最低。【点睛】本题考查了一次函数的应用,题目较为复杂,理清题中数量关系是解(2)题的关键,利用了一次函数的增减性,结合自变量x的取值范围是解(3)题的关键。21、(1)0.5;(2)20;(3)10【解析】

(1)根据统计图找到摸到黑球的频率稳定到的常数即为本题的答案;(2)根据(1)的值求得答案即可;(3)设向袋子中放入了黑个红球,根据摸到黑球最终稳定的频率即为概率的估计值,列出方程求解可得.【详解】解:(1)观察发现:随着实验次数的增加频率逐渐稳定到常数0.5附近,故摸到黑球的频率会接近0.5,故答案为:0.5;(2)∵摸到黑球的频率会接近0.5,∴黑球数应为球的总数的一半,∴估计袋中黑球的个数为20只,故答案为:20;(3)设放入黑球x个,根据题意得:20+x40+x=0.6解得x=10,经检验:x=10是原方程的根,故答案为:10;【点睛】本题主要考查概率公式和频率估计概率,熟练掌握概率公式:概率等于所求情况数与总情况数之比是解题的关键.22、(1)甲得分中位数为:92(分),乙得分中位数为:91(分);(2)甲平均得分:91(分),乙平均得分:91.6(分),平均得分看应该录用乙;(3)专家评委组赋的权至少为0.6时,甲的平均得分比乙的平均得分多0.5分及以上.【解析】

(1)将甲、乙二人的成绩分别排序找出中间位置的一个数即可,(2)根据算术平均数的计算方法求平均数即可,(3)根据加权平均数的求法设出权数,列不等式解答即可.【详解】(1)甲得分:87878992939495,中位数为:92(分),乙得分:87898991949596,中位数为:91(分);(2)甲平均得分:甲=92+(-3+2+1-5+3+0-5)=91(分),乙平均得分:乙=92+(-5-3-1+3+2+4-3)≈91.6(分),从平均得分看应该录用乙;(3)设专家评委组赋的权至少为x时,甲的平均得分比乙的平均得分多0.5分及以上,(89+94+93)x+(87+95+92+87)(1-x)≥(87+89+91)x+(95+94+96+89)(1-x)即:276x+361-361x≥267x+374-374x解得:x≥≈0.6所以,专家评委组赋的权至少为0.6时,甲的平均得分比乙的平均得分多0.5分及以上。【点睛】考查中位数、算术平均数、加权平均数的意义及计算方法,理解权重对平均数的影响是解决问题的关键.23、(1)MN=2+;(2)y=•x•2x(0<x<4);(3)1或1.【解析】

(1)解直角三角形求出AD,利用梯形中位线定理即可解决问题;

(2)求出AD,利用梯形的面积公式计算即可;

(3)作AG⊥BC于G,EH⊥BC于H.想办法证明△ABC≌△ECB,推出AC=BE=4,因为AC⊥BE,可得S四边形ABCE=•AC•BE,由此计算即可;【详解】(1)∵AD∥BC,∴∠DAC=∠ACB=30°,在Rt△ACD中,∵AC=4,∠D=90°,∠ACD=30°,∴CD=AC=2,AD=CD=2,∵AM=BM,DN=CN,∴MN是梯形ABCD的中位线,∴MN=(AD+BC)=2+.(2)在Rt△ACD中,∵AC=4,∠D=90°,CD=x,∴AD==,∴y=•(AD+BC)•CD=(+4)x=•x•+2x(0<x<4).(3)①当点E在线段AD上时,作AG⊥BC于G,EH⊥BC于H.∵AD∥BC,AG⊥BC于G,EH⊥BC于H.∴AG=EH,∠AGB=∠EHC=90°,∵AB=EC,∴Rt△ABG≌Rt△ECH,∴∠ABC=∠ECB,∵AB=EC,BC=CB,∴△ABC≌△ECB,∴AC=BE=4,∵AC⊥BE,∴S四边形ABCE=•AC•BE=×4×4=1.②当点E在AD的延长线上时,易证四边形ABCE是平行四边形,∵BE⊥AC,∴四边形ABCE是菱形,∵BC=A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论