2023年陕西省西安市高新二中学数学八年级第二学期期末经典试题含解析_第1页
2023年陕西省西安市高新二中学数学八年级第二学期期末经典试题含解析_第2页
2023年陕西省西安市高新二中学数学八年级第二学期期末经典试题含解析_第3页
2023年陕西省西安市高新二中学数学八年级第二学期期末经典试题含解析_第4页
2023年陕西省西安市高新二中学数学八年级第二学期期末经典试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=3,BC=1.将腰CD以D为旋转中心逆时针旋转90°至DE,连结AE,则△ADE的面积是()A.32 B.2 C.522.如图,在△ABC中,BF平分∠ABC,过A点作AF⊥BF,垂足为F并延长交BC于点G,D为AB中点,连接DF延长交AC于点E。若AB=12,BC=20,则线段EF的长为()A.2 B.3 C.4 D.53.下列二次根式中与是同类二次根式的是()A. B. C. D.4.下列命题中的假命题是()A.一组邻边相等的平行四边形是菱形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等且有一个角是直角的四边形是矩形5.如图,在平面直角坐标系xOy中,点A、C、F在坐标轴上,E是OA的中点,四边形AOCB是矩形,四边形BDEF是正方形,若点C的坐标为(3,0),则点D的坐标为()A.(1,2.5) B.(1,1+) C.(1,3) D.(﹣1,1+)6.如图,在正方形ABCD中,点E,F分别在CD,BC上,且AF=BE,BE与AF相交于点G,则下列结论中错误的是()A.BF=CE B.∠DAF=∠BECC.AF⊥BE D.∠AFB+∠BEC=90°7.如图,OC平分∠AOB,点P是射线OC上的一点,PD⊥OB于点D,且PD=3,动点Q在射线OA上运动,则线段PQ的长度不可能是()A.2 B.3 C.4 D.58.下列事件中是必然事件的是()A.投掷一枚质地均匀的硬币100次,正面朝上的次数为50次B.一组对边平行,另一组对边相等的四边形是等腰梯形C.如果,那么D.13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月9.电话每台月租费元,市区内电话(三分钟以内)每次元,若某台电话每次通话均不超过分钟,则每月应缴费(元)与市内电话通话次数之间的函数关系式是()A. B.C. D.10.若一个多边形的内角和为外角和的3倍,则这个多边形为()A.八边形 B.九边形 C.十边形 D.十二边形二、填空题(每小题3分,共24分)11.已知,如图△ABC∽△AED,AD=5cm,EC=3cm,AC=13cm,则AB=_____cm.12.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,BD⊥AD,AD=6,AB=10,则△AOB的面积为_________________13.若点位于第二象限,则x的取值范围是______.14.如图,直线y=x﹣4与x轴交于点A,以OA为斜边在x轴上方作等腰Rt△OAB,并将Rt△AOB沿x轴向右平移,当点B落在直线y=x﹣4上时,Rt△OAB扫过的面积是__.15.某汽车在某一直线道路上行驶,该车离出发地的距离S(千米)和行驶时间t(小时)之间的函数关系如图所示(折线ABCDE).根据图中提供的信息,给出下列四种说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在行驶过程中的平均速度为千米/小时;④汽车自出发后3小时至4.5小时之间行驶的速度不变.其中说法正确的序号分别是_____(请写出所有的).16.解一元二次方程x2+2x-3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程__________.17.如图,菱形ABCD的对角线AC、BD相交于点O,M、N分别为边AB、BC的中点,连接MN.若MN=1,BD,则菱形的周长为________.18.方程组的解是三、解答题(共66分)19.(10分)设P(x,0)是x轴上的一个动点,它与原点的距离为y1.(1)求y1关于x的函数解析式,并画出这个函数的图象;(2)若反比例函数y2的图象与函数y1的图象相交于点A,且点A的纵坐标为2.①求k的值;②结合图象,当y1>y2时,写出x的取值范围.20.(6分)育才中学开展了“孝敬父母,从家务事做起”活动,活动后期随机调查了八年级部分学生一周在家做家务的时间,并将结果绘制成如下两幅尚不完整的统计图请你根据统计图提供的信息回答下列问题:(1)本次调查的学生总数为人,被调查学生做家务时间的中位数是小时,众数是小时;(2)请你补全条形统计图;(3)若全校八年级共有学生1500人,估计八年级一周做家务的时间为4小时的学生有多少人?21.(6分)如图,在Rt△ABC中,∠C=90°,以点B为圆心,以适当的长为半径画弧,与∠ABC的两边相交于点E、F,分别以点E和点F为圆心,以大于EF的长为半径画弧,两弧相交于点M,作射线BM交AC于点D;若∠ABC=2∠A,证明:AD=2CD.22.(8分)对于任意三个实数a,b,c,用min|a,b,c|表示这三个实数中最小数,例如:min|-2,0,1|=-2,则:(1)填空,min|(-2019)0,(-)-2,-|=______,如果min|3,5-x,3x+6|=3,则x的取值范围为______;(2)化简:÷(x+2+)并在(1)中x的取值范围内选取一个合适的整数代入求值.23.(8分)已知如图,在▱ABCD中,E为CD的中点,连接AE并延长,与BC的延长线相交于点F.求证:AE=FE.24.(8分)计算:(1).(2).(3).(4)解方程:.25.(10分)如图,矩形中,,,为上一点,将沿翻折至,与相交于点,与相交于点,且.(1)求证:;(2)求的长度.26.(10分)如图所示,AC是▱ABCD的一条对角线,过AC中点O的直线EF分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)连接AF和CE,当EF⊥AC时,判断四边形AFCE的形状,并说明理由

参考答案一、选择题(每小题3分,共30分)1、A【解析】

作EF⊥AD交AD延长线于点F,作DG⊥BC于点G,首先利用旋转的性质证明△DCG与△DEF全等,再根据全等三角形对应边相等可得EF的长,即△ADE的高,即可求出三角形ADE的面积.【详解】解:如图所示,作EF⊥AD交AD延长线于点F,作DG⊥BC于点G,∵CD以D为中心逆时针旋转90°至ED,∴∠EDF+∠CDF=90°,DE=CD,又∵∠CDF+∠CDG=90°,∴∠CDG=∠EDF,∴△DCG≌△DEF(AAS),∴EF=CG,∵AD=3,BC=1,∴CG=BC-AD=1-3=1,∴EF=1,∴△ADE的面积是12故选A.【点睛】本题考查了梯形的性质、旋转的性质和全等三角形的判定与性质,对于旋转来说,旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①旋转中心;②旋转方向;③旋转角度.本题证明△DCG与△DEF全等正是充分运用了旋转的性质.2、C【解析】

由直角三角形的性质可求得DF=BD=AB,由角平分线的定义可证得DE∥BC,利用三角形中位线定理可求得DE的长,则可求得EF的长.【详解】解:∵AF⊥BF,D为AB的中点,∴DF=DB=AB=6,∴∠DBF=∠DFB,∵BF平分∠ABC,∴∠DBF=∠CBF,∴∠DFB=∠CBF,∴DE∥BC,∴DE为△ABC的中位线,∴DE=BC=10,∴EF=DE−DF=10−6=4,故选:C.【点睛】本题考查直角三角形斜边上的中线的性质,角平分线的性质,等腰三角形的判定与性质,三角形中位线定理.根据直角三角形斜边上的中线是斜边是斜边的一半可得△DBF为等腰三角形,通过角平分线的性质和等角对等边可得DF//BC,即DE为△ABC的中位线,从而计算出DE,继而求出EF.3、B【解析】

先将各选项化简,再根据同类二次根式的定义解答.【详解】A、,与被开方数不相同,故不是同类二次根式,选项错误;

B、,与被开方数相同,故是同类二次根式,选项正确;

C、,与被开方数不同,故不是同类二次根式,选项错误;

D、是整数,不是二次根式,故选项错误.

所以B选项是正确的.【点睛】本题主要考查同类二次根式的定义,正确对根式进行化简,以及正确理解同类二次根式的定义是解决问题的关键.4、D【解析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.解:A、根据菱形的判定定理,正确;B、根据正方形和矩形的定义,正确;C、符合平行四边形的定义,正确;D、错误,可为不规则四边形.故选D.5、C【解析】

过D作DH⊥y轴于H,根据矩形和正方形的性质得到AO=BC,DE=EF=BF,∠AOC=∠DEF=∠BFE=∠BCF=90°,根据全等三角形的性质即可得到结论.【详解】过D作DH⊥y轴于H,∵四边形AOCB是矩形,四边形BDEF是正方形,∴AO=BC,DE=EF=BF,∠AOC=∠DEF=∠BFE=∠BCF=90°,∴∠OEF+∠EFO=∠BFC+∠EFO=90°,∴∠OEF=∠BFO,∴△EOF≌△FCB(ASA),∴BC=OF,OE=CF,∴AO=OF,∵E是OA的中点,∴OE=OA=OF=CF,∵点C的坐标为(3,0),∴OC=3,∴OF=OA=2,AE=OE=CF=1,同理△DHE≌△EOF(ASA),∴DH=OE=1,HE=OF=2,∴OH=2,∴点D的坐标为(1,3),故选:C.【点睛】本题考查了正方形的性质,坐标与图形性质,矩形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.6、D【解析】

根据正方形的性质可得∠FBA=∠BCE=90°、AB=BC,结合BF=CE可用“SAS”得到△ABF≌△BCE,从而可对A进行判断;由全等三角形的性质可得∠BAF=∠CBE,结合等角的余角相等即可对B进行判断;由直角三角形的两个锐角互余可得∠BAF+∠AFB=90°,结合全等三角形的性质等量代换可得∠CBE+∠AFB=90°,从而可得到∠BGF的度数,据此对C进行判断;对于D,由全等三角形的性质可知∠AFB=∠BEC,因此∠AFB=∠BEC=45°时D正确,分析能否得到∠AFB=45°即可对其进行判断.【详解】∵四边形ABCD为正方形,∴∠FBA=∠BCE=90°,AB=BC,又∵AF=BE,∴△ABF≌△BCE,∴BF=CE,∠BAF=∠CBE.故A正确;∵∠C=90°,∴∠CBE+∠BEC=90°.∵∠BAD=∠BAF+∠DAF=90°,∠BAF=∠CBE,∴∠DAF=∠BEC,故B正确.∵∠BAF=∠CBE,∠BAF+∠AFB=90°,∴∠CBE+∠AFB=90°,∴∠BGF=90°,∴AG⊥BE,故C正确.∵△ABF≌△BCE,∴∠AFB=∠BEC.又∵点F在BC上,∴∠AFB≠45°,∴∠AFB+∠BEC≠90°,故D错误;故选D.【点睛】本题考察了正方形的四个角都是直角,四条边相等,全等三角形的判定(SAS),全等三角形的性质,同角(等角)的余角相等,牢牢掌握这些知识点是解答本题的关键.7、A【解析】试题分析:过点P作PE⊥OA于E,根据角平分线上的点到脚的两边距离相等可得PE=PD,再根据垂线段最短解答.解:如图,过点P作PE⊥OA于E,∵OC平分∠AOB,PD⊥OB,∴PE=PD=3,∵动点Q在射线OA上运动,∴PQ≥3,∴线段PQ的长度不可能是1.故选A.点评:本题考查了角平分线上的点到脚的两边距离相等的性质,垂线段最短的性质,是基础题,熟记性质是解题的关键.8、D【解析】

根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、投掷一枚质地均匀的硬币100次,正面朝上的次数为50次是随机事件;B、一组对边平行,另一组对边相等的四边形是等腰梯形是随机事件;C、如果a2=b2,那么a=b是随机事件;D、13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月是必然事件;故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、C【解析】

本题考查了一次函数的解析式,设为,把k和b代入即可.【详解】设函数解析式为:,由题意得,k=0.2,b=28,∴函数关系式为:.故选:C.【点睛】本题考查了一次函数解析式的表示,熟练掌握一次函数解析式的表示方法是解题的关键.10、C【解析】

设多边形的边数为n,而多边形的内角和公式为180(n-2)度,外角和为360度,则有:180(n-2)=360×4,解方程可得.【详解】解:设多边形的边数为n,而多边形的内角和公式为180(n-2)度,外角和为360度,则有:180(n-2)=360×4n-2=8解得:n=10所以,这是个十边形故选C.【点睛】本题考核知识点,多边形的内角和外角.解题关键点,熟记多边形内角和计算公式.二、填空题(每小题3分,共24分)11、1【解析】

试题分析:有△ABC∽△AED,可以得到比例线段,再通过比例线段可求出AB的值.解:∵△ABC∽△AED∴又∵AE=AC﹣EC=10∴∴AB=1.考点:相似三角形的性质.12、12【解析】∵BD⊥AD,AD=6,AB=10,,∴.∵四边形ABCD是平行四边形,13、【解析】

点在第二象限时,横坐标<0,纵坐标>0,可得关于x的不等式,解不等式即可得答案.【详解】点位于第二象限,,解得:,故答案为.【点睛】本题考查了象限内点的坐标特征,解一元一次不等式,解决本题的关键是记住各个象限内点的坐标的符号,进而转化为解不等式的问题.14、1.【解析】

根据等腰直角三角形的性质求得点BC、OC的长度,即点B的纵坐标,表示出B′的坐标,代入函数解析式,即可求出平移的距离,进而根据平行四边形的面积公式即可求得.【详解】解:y=x-4,

当y=0时,x-4=0,

解得:x=4,

即OA=4,

过B作BC⊥OA于C,

∵△OAB是以OA为斜边的等腰直角三角形,

∴BC=OC=AC=2,

即B点的坐标是(2,2),

设平移的距离为a,

则B点的对称点B′的坐标为(a+2,2),

代入y=x-4得:2=(a+2)-4,

解得:a=4,

即△OAB平移的距离是4,

∴Rt△OAB扫过的面积为:4×2=1,

故答案为:1.【点睛】本题考查了一次函数图象上点的坐标特征、等腰直角三角形和平移的性质等知识点,能求出B′的坐标是解此题的关键.15、②④【解析】

根据题意和函数图象中的数据可以判断各个小题是否正确,从而可以解答本题.【详解】解:由图象可知,汽车共行驶了:120×2=240千米,故①错误,汽车在行驶图中停留了2﹣1.5=0.5(小时),故②正确,车在行驶过程中的平均速度为:千米/小时,故③错误,汽车自出发后3小时至4.5小时之间行驶的速度不变,故④正确,故答案为:②④.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16、x+3=1(或x-1=1)【解析】试题分析:把方程左边分解,则原方程可化为x﹣1=1或x+3=1.解:(x﹣1)(x+3)=1,x﹣1=1或x+3=1.故答案为x﹣1=1或x+3=1.考点:解一元二次方程-因式分解法.17、8【解析】

由三角形中位线的性质可求出AC的长,根据菱形的性质可得OA、OB的长,利用勾股定理可求出AB的长,即可求出菱形的周长.【详解】∵M、N分别为边AB、BC的中点,MN=1,∴AC=2MN=2,∵AC、BD是菱形ABCD的对角线,BD=2,∴OA=AC=1,OB=BD=,∴AB==2,∴菱形的周长=4AB=8,故答案为:8【点睛】本题考查了菱形的性质、三角形中位线的性质及勾股定理,菱形的四条边相等,对角线互相垂直平分且平分对角;三角形中位线平行于第三边且等于第三边的一半.熟练掌握相关性质是解题关键.18、【解析】

试题考查知识点:二元一次方程组的解法思路分析:此题用加减法更好具体解答过程:对于,两个方程相加,得:3x=6即x=2把x=2代入到2x-y=5中,得:y=-1∴原方程组的解是:试题点评:三、解答题(共66分)19、(1)y1=|x|,图象见解析;(2)①±4;②答案见解析.【解析】

(1)写出函数解析式,画出图象即可;(2)①分两种情形考虑,求出点A坐标,利用待定系数法即可解决问题;②利用图象法分两种情形即可解决问题.【详解】(1)由题意y1=|x|,函数图象如图所示:(2)①当点A在第一象限时,由题意A(2,2),∴2,∴k=4,同法当点A在第二象限时,k=﹣4,②观察图象可知:当k>0时,x>2时,y1>y2或x<0时,y1>y2.当k<0时,x<﹣2时,y1>y2或x>0时,y1>y2.【点睛】本题考查反比例函数图象上点的特征,正比例函数的应用等知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.20、(1)50,4,5;(2)作图见解析;(3)480人.【解析】

(1)根据统计图可知,做家务达3小时的共10人,占总人数的20%,由此可得出总人数;求出做家务时间4小时与6小时男生的人数,再根据中位数与众数的定义即可得出结论;根据所求结果补全条形统计图即可;(2)求出做家务时间为4、6小时的人数;(3)求出总人数与做家务时间为4小时的学生人数的百分比的积即可.【详解】解:(1)∵做家务达3小时的共10人,占总人数的20%,∴=50(人).∵做家务4小时的人数是32%,∴50×32%=16(人),∴男生人数=16﹣8=8(人);∴做家务6小时的人数=50﹣6﹣4﹣8﹣8﹣8﹣12﹣3=1(人),∴做家务3小时的是10人,4小时的是16人,5小时的是20人,6小时的是4人,∴中位数是4小时,众数是5小时.故答案为:50,4,5;(2)补全图形如图所示.(3)∵做家务4小时的人数是32%,∴1500×32%=480(人).答:八年级一周做家务时间为4小时的学生大约有480人【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21、详见解析【解析】

根据角平分线的画法和性质解答即可.【详解】证明:由题意可得:BD是∠ABC的角平分线,∵∠ABC=2∠A,在Rt△ABC中,∠C=90°,∴∠ABC=60°,∠A=30°,∴∠CBD=∠DBA=30°,∴BD=2CD,∵∠DBA=∠A=30°,∴AD=BD,∴AD=2CD.【点睛】本题考查了基本作图,关键是根据角平分线的画法和性质证明.22、(1)-,-1≤x≤2;(2),x=0时,原式=1【解析】

(1)根据零指数幂的性质和负整数指数幂的性质化简,利用新定义列出不等式组,可以得到所求式子的值和x的取值范围;(2)根据分式的加法和除法可以化简题目中的式子,然后根据(1)中x的取值范围,选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】(1)∵(-2019)0=1,(-)-2=4,∴min|(-2019)0,(-)-2,-|=-,∵min|3,5-x,3x+6|=3,∴,得-1≤x≤2,故答案为:-,-1≤x≤2;(2)÷(x+2+)====,∵-1≤x≤2,且x≠-1,1,2,∴当x=0时,原式==1.【点睛】本题考查分式的化简求值、零指数幂、负整数指数幂、解一元一次不等式组,解答本题的关键是明确它们各自的解答方法.23、见解析【解析】

由已知条件易得AD∥BC,由此可得∠D=∠FCE,结合DE=CE,∠AED=∠FEC,即可证得△ADE≌△FCE,由此即可得到AE=FE.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠FCE,∵点E是CD的中点,∴DE=CE,∵∠AED=∠FEC,∴△ADE≌△FCE,∴AE=FE.【点睛】熟悉平行四边形的性质和全等三角形的判定与性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论