版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.甲车行驶40km与乙车行使30km所用的时间相同,已知甲车比乙车每小时多行驶15km.设甲车的速度为xkm/h,依题意,下列所列方程正确的是()A.= B.= C.= D.=2.下列说法:①“掷一枚质地均匀的硬币,朝上一面可能是正面”;②“从一副普通扑克牌中任意抽取一张,点数一定是3”()A.只有①正确 B.只有②正确 C.①②都正确 D.①②都错误3.下列说法正确的是()A.对角线互相垂直的四边形是菱形 B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形 D.对角线相等的菱形是正方形4.下列各式中是二次根式的为()A. B. C. D.5.下列等式从左边到右边的变形,是因式分解的是()A.(3﹣a)(3+a)=9﹣a2 B.x2﹣y2+1=(x+y)(x﹣y)+1C.a2+1=a(a+) D.m2﹣2mn+n2=(m﹣n)26.在以下列线段a、b、c的长为边的三角形中,不能构成直角三角形的是()A.a=9b=41c=40 B.a=b=5c=5C.a:b:c=3:4:5 D.a=11b=12c=157.下列方程是一元二次方程的是()A.x+2y=1 B.x2=1 C.x8.函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB、AC于点D、E,则以下AE与CE的数量关系正确的是()A.AE=CE B.AE=CE C.AE=CE D.AE=2CE10.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()A. B. C. D.二、填空题(每小题3分,共24分)11.在四边形ABCD中,AB=CD,请添加一个条件_____,使得四边形ABCD是平行四边形.12.若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为.13.如图,在Rt△ABC中,∠ACB=90°,∠B=10°,BC=1.点D是BC边上的一动点(不与点B、C重合),过点D作DE⊥BC交AB于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处.当△AEF为直角三角形时,BD的长为_____.14.如图,在平面直角坐标系中,已知△ABC与△DEF位似,原点O是位似中心,位似比,若AB=1.5,则DE=_____.15.如图,直线为和的交点是,过点分别作轴、轴的垂线,则不等式的解集为__________.16.如图,在四边形中,对角线相交于点,则四边形的面积是_____.17.在三角形中,点分别是的中点,于点,若,则________.18.如图,在边长为1的正方形网格中,两格点之间的距离为__________1.(填“”,“”或“”).三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(−2,−2),B(−4,−1),C(−4,−4).(1)作出ABC关于原点O成中心对称的A1B1C1.(2)作出点A关于x轴的对称点A'若把点A'向右平移a个单位长度后落在A1B1C1的内部(不包括顶点和边界),求a的取值范围.20.(6分)如图,矩形的面积为20cm2,对角线交于点,以AB、AO为邻边作平行四边形,对角线交于点;以为邻边作平行四边形;…;依此类推,则平行四边形的面积为______,平行四边形的面积为______.21.(6分)如果P是正方形ABCD内的一点,且满足∠APB+∠DPC=180°,那么称点P是正方形ABCD的“对补点”.(1)如图1,正方形ABCD的对角线AC,BD交于点M,求证:点M是正方形ABCD的对补点;(2)如图2,在平面直角坐标系中,正方形ABCD的顶点A(1,1),C(3,3).除对角线交点外,请再写出一个该正方形的对补点的坐标,并证明.22.(8分)据某市交通运管部门月份的最新数据,目前该市市面上的共享单车数量已达万辆,共享单车也逐渐成为高校学生喜爱的“绿色出行”方式之一.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.使用次数人数(1)求这天部分出行学生使用共享单车次数的平均数,中位数和众数.(2)若该校这天有名学生出行,估计使用共享单车次数在次以上(含次)的学生数.23.(8分)在矩形中ABCD,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对位点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求的值.24.(8分)如图,矩形ABCD中,AB4,BC10,E在AD上,连接BE,CE,过点A作AG//CE,分别交BC,BE于点G,F,连接DG交CE于点H.若AE2,求证:四边形EFGH是矩形.25.(10分)长方形纸片中,,,把这张长方形纸片如图放置在平面直角坐标系中,在边上取一点,将沿折叠,使点恰好落在边上的点处.(1)点的坐标是____________________;点的坐标是__________________________;(2)在上找一点,使最小,求点的坐标;(3)在(2)的条件下,点是直线上一个动点,设的面积为,求与的函数关系式.26.(10分)知识再现:如果,,则线段的中点坐标为;对于两个一次函数和,若两个一次函数图象平行,则且;若两个一次函数图象垂直,则.提醒:在下面这个相关问题中如果需要,你可以直接利用以上知识.在平面直角坐标系中,已知点,.(1)如图1,把直线向右平移使它经过点,如果平移后的直线交轴于点,交x轴于点,请确定直线的解析式.(2)如图2,连接,求的长.(3)已知点是直线上一个动点,以为对角线的四边形是平行四边形,当取最小值时,请在图3中画出满足条件的,并直接写出此时点坐标.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
设甲车的速度为xkm/h,则乙车的速度为(x-15)km/h,根据时间=路程÷速度结合甲车行驶40km与乙车行使30km所用的时间相同,即可得出关于x的分式方程,此题得解.【详解】设甲车的速度为xkm/h,则乙车的速度为(x﹣15)km/h,根据题意得:=.故选A.【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.2、A【解析】
根据不可能事件,随机事件,必然事件发生的概率以及概率的意义找到正确选项即可.【详解】掷一枚质地均匀的硬币,朝上一面可能是正面,可能是反面,所以①正确;从一副普通扑克牌中任意抽取一张,点数不一定是3,所以②错误,故选A.【点睛】本题考查了随机事件与确定事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.确定事件包括必然事件和不可能事件:(1)必然事件指在一定条件下一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件.(2)不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3、D【解析】
利用菱形的判定、平行四边形的判定、正方形的判定及矩形的性质逐一判断即可得答案.【详解】A.对角线互相垂直的平行四边形是菱形,故该选项错误,B.矩形的对角线一定相等,但不一定垂直,故该选项错误,C.一组对边平行且相等的四边形是平行四边形,故该选项错误,D.对角线相等的菱形是正方形,正确,故选D.【点睛】此题主要考查了菱形的判定、正方形的判定、平行四边形的判定及矩形的性质等知识,对角线互相垂直的平行四边形是菱形以及四条边相等的四边形是菱形;一组对边平行且相等的四边形是平行四边形;对角线相等的菱形是正方形;熟练掌握相关判定方法及性质是解题关键.4、A【解析】【分析】定义:一般地,形如(a≥0)的代数式叫做二次根式.根据定义可以进行逐个判断.【详解】A.符合定义条件,故正确;B.,没有强调a≥0故错;C.根指数是3,不是二次根式;D.中,-3<0,故错.故正确选项是A.【点睛】此题考核二次根式的定义.只要分析被开方数的符号,看根指数是否为2就容易判断.5、D【解析】
利用把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,进而判断得出答案.【详解】A、(3﹣a)(3+a)=9﹣a2,是整式的乘法运算,故此选项错误;B、x2﹣y2+1=(x+y)(x﹣y)+1,不符合因式分解的定义,故此选项错误;C、a2+1=a(a+),不符合因式分解的定义,故此选项错误;D、m2﹣2mn+n2=(m﹣n)2,正确.故选:D.【点睛】此题主要考查了因式分解的意义,正确把握定义是解题关键.6、D【解析】
根据直角三角形的判定,符合a2+b2=c2即可;反之不符合的不能构成直角三角形.【详解】解:A、因为92+402=412,故能构成直角三角形;B、因为52+52=(5)2,故能构成直角三角形;C、因为32+42=52,故能构成直角三角形;D、因为112+122≠152,故不能构成直角三角形;故选:D.【点睛】本题考查的是勾股定理的逆定理,当三角形中三边满足关系时,则三角形为直角三角形.7、B【解析】
本题根据一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.据此即可判断.【详解】解:A、含有2个未知数,不是一元二次方程,故选项不符合题意;B、只有一个未知数且最高次数为2,是一元二次方程,选项符合题意;C、不是整式方程,则不是一元二次方程,选项不符合题意;D、整理后得3x=-1,最高次数为1,不是二次方程,选项不符合题意;故选:B.【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=1(且a≠1).特别要注意a≠1的条件.这是在做题过程中容易忽视的知识点.8、B【解析】
根据k>0确定一次函数经过第一三象限,根据b<0确定与y轴负半轴相交,从而判断得解.【详解】解:一次函数y=x﹣2,∵k=1>0,∴函数图象经过第一三象限,∵b=﹣2<0,∴函数图象与y轴负半轴相交,∴函数图象经过第一三四象限,不经过第二象限.故选B.9、D【解析】
首先连接BE,由在△ABC中,∠C=90°,∠A=30°,可求得∠ABC的度数,又由AB的垂直平分线交AB于点D,交AC于点E,根据线段垂直平分线的性质,可得AE=BE,继而可求得∠CBE的度数,然后由含30°角的直角三角形的性质,证得AE=2CE.【详解】连接BE,∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC-∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE,故选D.【点睛】此题考查了线段垂直平分线的性质、直角三角形的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.10、B【解析】
通过一次函数的定义即可解答.【详解】解:已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,故k>0,即一次函数y=x+k的图象过一二三象限,答案选B.【点睛】本题考查一次函数的定义与性质,熟悉掌握是解题关键.二、填空题(每小题3分,共24分)11、AB//CD等【解析】
根据平行四边形的判定方法,结合已知条件即可解答.【详解】∵AB=CD,∴当AD=BC,(两组对边分别相等的四边形是平行四边形.)或AB∥CD(一组对边平行且相等的四边形是平行四边形.)时,四边形ABCD是平行四边形.故答案为AD=BC或者AB∥CD.【点睛】本题考查了平行四边形的判定,平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.12、1.【解析】∵,∴=0,b-2=0,解得a=3,b=2.∵直角三角形的两直角边长为a、b,∴该直角三角形的斜边长=.13、1或2【解析】
解:据题意得:∠EFB=∠B=10°,DF=BD,EF=EB,∵DE⊥BC,∴∠FED=90°-∠EFD=60°,∠BEF=2∠FED=120°,∴∠AEF=180°-∠BEF=60°,∵在Rt△ABC中,∠ACB=90°,∠B=10°,BC=1,∴AC=AB,∠BAC=60°,设AC=x,则AB=2x,由勾股定理得:AC2+BC2=AB2,∴x2+12=(2x)2解得x=.如图①若∠AFE=90°,∵在Rt△ABC中,∠ACB=90°,∴∠EFD+∠AFC=∠FAC+∠AFC=90°,∴∠FAC=∠EFD=10°,∴CF=AF,设CF=y,则AF=2y,由勾股定理得CF2+AC2=AF2,∴y2+()2=(2y)2解得y=1,∴BD=DF=(BC−CF)=1;如图②若∠EAF=90°,则∠FAC=90°-∠BAC=10°,同上可得CF=1,∴BD=DF=(BC+CF)=2,∴△AEF为直角三角形时,BD的长为:1或2.故答案为1或2.点睛:此题考查了直角三角形的性质、折叠的性质以及勾股定理的知识.此题难度适中,注意数形结合思想与分类讨论思想的应用.14、4.1【解析】
根据位似图形的性质得出AO,DO的长,进而得出,,求出DE的长即可【详解】∵△ABC与△DEF位似,原点O是位似中心,∴,∵,∴,∴,∴DE=3×1.1=4.1.故答案为4.1.【点睛】此题考查坐标与图形性质和位似变换,解题关键在于得出AO,DO的长15、.【解析】
根据一元一次函数和一元一次不等式的关系,从图上直接可以找到答案.【详解】解:由,即函数的图像位于的图像的上方,所对应的自变量x的取值范围,即不等式的解集,解集为.【点睛】本题考查了一次函数与不等式的关系,因此数形结合成为本题解答的关键.16、24【解析】
判断四边形ABCD为平行四边形,即可根据题目信息求解.【详解】∵在中∴四边形ABCD为平行四边形∴故答案为:24【点睛】本题考查了平行四边形的判定,解题的关键在于根据题目中的数量关系得出四边形ABCD为平行四边形.17、80°【解析】
先由中位线定理推出,再由平行线的性质推出,然后根据直角三角形斜边上的中线等于斜边的一半得到HF=CF,最后由三角形内角和定理求出.【详解】∵点分别是的中点∴(中位线的性质)又∵∴(两直线平行,内错角相等)∵∴(两直线平行,同位角相等)又∵∴三角形是三角形∵是斜边上的中线∴∴(等边对等角)∴【点睛】本题考查了中位线定理,平行线的性质,直角三角形斜边上的中线等于斜边的一半,和三角形内角和定理.熟记性质并准确识图是解题的关键.18、<【解析】
根据勾股定理即可得到结论.【详解】解:点A,B之间的距离d=<1,
故答案为:<.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.三、解答题(共66分)19、见解析【解析】
(1)分别作出点A、B、C关于原点O成中心对称的对应点,顺次连接即可得;
(2)由点A′坐标为(-2,2)可知要使向右平移后的A′落在△A1B1C1的内部,最少平移4个单位,最多平移1个单位,据此可得.【详解】解:(1)如图所示,△A1B1C1即为所求;
(2)∵点A′坐标为(-2,2),
∴若要使向右平移后的A′落在△A1B1C1的内部,最少平移4个单位,最多平移1个单位,即4<a<1.【点睛】考查作图-中心对称和轴对称、平移,熟练掌握中心对称和轴对称、平移变换的性质是解题的关键.20、【解析】
根据矩形的性质求出△AOB的面积等于矩形ABCD的面积的,求出△AOB的面积,再分别求出△ABO1、△ABO2、△ABO3、△ABO4的面积,求出平行四边形的面积,然后再观察发现规律进行解答.【详解】解:∵四边形ABCD是矩形,∴AO=CO,BO=DO,DC∥AB,DC=AB,∴S△ADC=S△ABC=S矩形ABCD=×20=10,∴S△AOB=S△BCO=S△ABC=×10=5,∴S△ABO1=S△AOB=×5=,∴S△ABO2=S△ABO1=,S△ABO3=S△ABO2=,S△ABO4=S△ABO3=,∴S平行四边形AO4C5B=2S△ABO4=2×=,∴平行四边形的面积为:,故答案为:,.【点睛】本题考查了三角形的面积,矩形的性质,平行四边形的性质的应用,解此题的关键是能根据求出的结果得出规律,注意:等底等高的三角形的面积相等.21、(1)证明见解析;(2)对补点如:N(,).证明见解析【解析】试题分析:(1)根据正方形的对角线互相垂直,得到∠DMC=∠AMB=90°,从而得到点M是正方形ABCD的对补点.(2)在直线y=x(1<x<3)或直线y=-x+4(1<x<3)上除(2,2)外的任意点均可,通过证明△DCN≌△BCN,得到∠CND=∠CNB,利用邻补角的性质即可得出结论.试题解析:(1)∵四边形ABCD是正方形,∴AC⊥BD.∴∠DMC=∠AMB=90°.即∠DMC+∠AMB=180°.∴点M是正方形ABCD的对补点.(2)对补点如:N(,).说明:在直线y=x(1<x<3)或直线y=-x+4(1<x<3)上除(2,2)外的任意点均可.证明(方法一):连接AC,BD由(1)得此时对角线的交点为(2,2).设直线AC的解析式为:y=kx+b,把点A(1,1),C(3,3)分别代入,可求得直线AC的解析式为:y=x.则点N(,)是直线AC上除对角线交点外的一点,且在正方形ABCD内.连接AC,DN,BN,∵四边形ABCD是正方形,∴DC=BC,∠DCN=∠BCN.又∵CN=CN,∴△DCN≌△BCN.∴∠CND=∠CNB.∵∠CNB+∠ANB=180°,∴∠CND+∠ANB=180°.∴点N是正方形ABCD的对补点.证明(方法二):连接AC,BD,由(1)得此时对角线的交点为(2,2).设点N是线段AC上的一点(端点A,C及对角线交点除外),连接AC,DN,BN,∵四边形ABCD是正方形,∴DC=BC,∠DCN=∠BCN.又∵CN=CN,∴△DCN≌△BCN.∴∠CND=∠CNB.∵∠CNB+∠ANB=180°,∴∠CND+∠ANB=180°.∴点N是正方形ABCD除对角线交点外的对补点.设直线AC的解析式为:y=kx+b,把点A(1,1),C(3,3)分别代入,可求得直线AC的解析式为:y=x.在1<x<3范围内,任取一点均为该正方形的对补点,如N(,).22、(1)中位数是次,众数是次;(2)人.【解析】
(1)根据平均数、中位数和众数的定义求解可得;(2)用总人数乘以样本中使用共享单车次数在2次以上(含2次)的学生所占比例即可得.【详解】(1)(次)次数从小到大排列后,中间两个数是与中位数是次共享单车的使用次数中,出现最多的是次众数是次(2)即该校这天使用共享单车次数在次以上(含次)的学生约有人.【点睛】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.23、(1)见解析;(2)①见解析;②【解析】
(1)先判断出,再判断出,即可得出结论;(2)①利用折叠的性质,得出,,进而判断出即可得出结论;②判断出,得出比例式建立方程求解即可得出,,再判断出,进而求出,即可得出结论;【详解】解:(1)在矩形中,,∵是中点∴=在和中,∴(2)①在矩形,∵沿折叠得到∴,∵∴∴∴∴②当时∵∴∵∴∵∴∴设∴∴∴或∵∴,∴,由折叠得,∴∵∴∴设∴∴∴在中,∴【点睛】本题考查了全等三角形的判定与性质、矩形的性质、翻折变换以及相似三角形的判定与性质,综合性较强,结合图形认真理解题意从而正确解题.24、证明见解析.【解析】
根据四边形ABCD是矩形以及AG//CE,得到四边形AECG是平行四边形,从而得到四边形BEDG是平行四边形,即可得到四边形EFGH是平行四边形,再根据勾股定理求出BE,CE长,由勾股定理的逆定理得到△BEC是直角三角形,即可得正.【详解】∵四边形ABCD是矩形,∴AD//BC,AD=BC=10,∵AG//CE,∴四边形AECG是平行四边形,∴AE=CG=2,∴ED=BG=8,∴四边形BEDG是平行四边形,∴BE//DG,∴四边形EFGH是平行四边形,∵∠BAE=90°,∠ADC=90°,∴BE=AB2∴BE∴△BEC是直角三角形,∴∠CEF=90°,∴四边形EFGH是矩形.【点睛】本题考查了矩形的判定与性质、平行四边形的判定与性质、勾股定理以及勾股定理的逆定理的运用,解题的关键是掌握这些性质.25、(1)(0,3);(﹣4,0);(2);(3)【解析】
(1)根据折叠性质求出BF,再利用勾股定理求出CF,从而得出OF,在△E
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民间借贷抵押协议范本
- 创意婚礼布置设计
- 水果购销合同范本文件
- 雨伞市场销售合约样本
- 房屋买卖合同的过户手续
- 房屋买卖合同的签订与合同效力
- 方形铸态井盖供应采购合同
- 卫星通信服务合同履行履行条件
- 水泥买卖简化版合同
- 自我挑选协议
- 海水的性质 说课课件 2023-2024学年高中地理人教版(2019)必修第一册
- 医院重点岗位工作人员轮岗制度
- CFM56-5B发动机VBV活门的钢丝软轴操控原理及软轴刚度研究
- Mysql 8.0 OCP 1Z0-908 CN-total认证备考题库(含答案)
- 带式输送机胶带安装
- 陈育民对FLAC3D常见问题的解答概要
- 谈谈公共政策环境对公共政策的影响
- 三年级数学期中测质量分析课件
- 大咯血的护理及急救课件
- 读音常考题型第一轮复习专项训练(试题)人教PEP版英语六年级上册
- 以循证医学为基础的静脉输液实践指南INS指南解读
评论
0/150
提交评论