版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个 B.4个 C.5个 D.无数个2.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2 B.3 C. D.3.小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图.在这20位同学中,本学期购买课外书的花费的众数和中位数分别是()A.50,50 B.50,30 C.80,50 D.30,504.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.5.如图,点O为四边形ABCD内任意一点,E,F,G,H分别为OA,OB,OC,OD的中点,则四边形EFGH的周长为()A.9 B.12 C.18 D.不能确定6.若代数式x-2x+3有意义,则xA.x=2 B.x≠2 C.x=3 D.x≠﹣37.下列说法正确的是()A.明天的天气阴是确定事件B.了解本校八年级(2)班学生课外阅读情况适合作抽查C.任意打开八年级下册数学教科书,正好是第5页是不可能事件D.为了解高港区262846人的体质情况,抽查了5000人的体质情况进行统计分析,样本容量是50008.如图,正方形的边长为4,点是的中点,点从点出发,沿移动至终点,设点经过的路径长为,的面积为,则下列图象能大致反映与函数关系的是()A. B. C. D.9.估计的结果在().A.8至9之间 B.9至10之间 C.10至11之间 D.11至12之间10.下列事件为必然事件的是()A.抛掷一枚硬币,落地后正面朝上B.篮球运动员投篮,投进篮筐;C.自然状态下水从高处流向低处;D.打开电视机,正在播放新闻.二、填空题(每小题3分,共24分)11.已知一次函数y=﹣2x+4,完成下列问题:(1)在所给直角坐标系中画出此函数的图象;(2)根据函数图象回答:方程﹣2x+4=0的解是______________;当x_____________时,y>2;当﹣4≤y≤0时,相应x的取值范围是_______________.12.如图,Rt△OAB的两直角边OA、OB分别在x轴和y轴上,,,将△OAB绕O点顺时针旋转90°得到△OCD,直线AC、BD交于点E.点M为直线BD上的动点,点N为x轴上的点,若以A,C,M,N四点为顶点的四边形是平行四边,则符合条件的点M的坐标为______.13.一次函数的图象不经过第_______象限.14.如图,为的中位线,平分,交于,,则的长为_______。15.如图,一根垂直于地面的木杆在离地面高3m处折断,若木杆折断前的高度为8m,则木杆顶端落在地面的位置离木杆底端的距离为________m.16.如图是由16个边长为1的正方形拼成的图案,任意连结这些小格点的三个顶点可得到一些三角形.与A,B点构成直角三角形ABC的顶点C的位置有___________个.17.在实数范围内分解因式:5-x2=_____.18.若关于的分式方程有解,则的取值范围是_______.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,已知点A(﹣1,3),B(﹣3,1),C(﹣1,1).且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A1B1C1,并写出A1的坐标;(1)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点P′(a+3,b+1),请画出平移后的△A1B1C1.20.(6分)已知一次函数的图象经过点(-2,-7)和(2,5),求该一次函数解析式并求出函数图象与y轴的交点坐标.21.(6分)如图,矩形的对角线交于点,点是矩形外的一点,其中.(1)求证:四边形是菱形;(2)若,连接交于于点,连接,求证:平分.22.(8分)我国古代数学名著《孙子算经》中有这样一道有关于自然数的题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?”就是说:一个数被2除余2,被5除余2,被7除余2,求这个数.《孙子算经》的解决方法大体是这样的先求被2除余2,同时能被5,7都整除的数,最小为1.再求被5除余2.同时能被2,7都整除的数,最小为62.最后求被7除余2,同时能被2,5都整除的数,最小为20.于是数1+62+20=222.就是一个所求的数.那么它减去或加上2,5,7的最小公倍数105的倍数,比如222﹣105=128,222+105=288…也是符合要求的数,所以符合要求的数有无限个,最小的是22.我们定义,一个自然数,若满足被2除余1,被2除余2,被5除余2,则称这个数是“魅力数”.(1)判断42是否是“魅力数”?请说明理由;(2)求出不大于100的所有的“魅力数”.23.(8分)通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,先阅读再解决后面的问题:原题:如图1,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,连接EF解题分析:由于AB=AD,我们可以延长CD到点G,使DG=BE,易得∠ABE=∠ADG=90°,可证ΔABE≅ΔADG.再证明ΔAFG≅ΔAFE,得EF=FG=DG+FD=BE+DF.问题(1):如图2,在四边形ABCD中,AB=AD,∠B=∠D=90°,E,F分别是边BC,CD上的点,且∠EAF=12∠BAD问题(2):如图3,在四边形ABCD中,∠B=∠D=90°,∠BAD=120°,AB=AD=1,点E,F分别在四边形ABCD的边BC,CD上的点,且∠EAF=60°,求此时ΔCEF的周长24.(8分)分解因式:2x2﹣12x+1.25.(10分)如图,在△ABC中,AC=BC,∠C=90°,D是BC上的一点,且BD=CD.(1)尺规作图:过点D作AB的垂线,交AB于点F;(2)连接AD,求证:AD是△ABC的角平分线.26.(10分)如图所示,平行四边形中,和的平分线交于边上一点,(1)求的度数.(2)若,则平行四边形的周长是多少?
参考答案一、选择题(每小题3分,共30分)1、C【解析】
结合正方形的特征,可知平移的方向只有5个,向上,下,右,右上45°,右下45°方向,否则两个图形不轴对称.【详解】因为正方形是轴对称图形,有四条对称轴,因此只要沿着正方形的对称轴进行平移,平移前后的两个图形组成的图形一定是轴对称图形,观察图形可知,向上平移,向上平移、向右平移、向右上45°、向右下45°平移时,平移前后的两个图形组成的图形都是轴对称图形,故选C.【点睛】本题考查了图形的平移、轴对称图形等知识,熟练掌握正方形的结构特征是解本题的关键.2、D【解析】分析:连接EF交AC于点M,由菱形的性质可得FM=EM,EF⊥AC;利用“AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理和解直角三角形的性质求解即可.详解:如图,连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用“AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=10,且tan∠BAC=;在Rt△AME中,AM=
AC=5
,tan∠BAC=,可得EM=
;在Rt△AME中,由勾股定理求得AE=
=1.2.故选:B.点睛:此题主要考查了菱形的性质,矩形的性质,勾股定理,全等三角形的判定与性质及锐角三角函数的知识,综合运用这些知识是解题关键.3、A【解析】分析:根据扇形统计图分别求出购买课外书花费分别为100、80、50、30、20元的同学人数,再根据众数、中位数的定义即可求解.详解:由扇形统计图可知,购买课外书花费为100元的同学有:20×10%=2(人),购买课外书花费为80元的同学有:20×25%=5(人),购买课外书花费为50元的同学有:20×40%=8(人),购买课外书花费为30元的同学有:20×20%=4(人),购买课外书花费为20元的同学有:20×5%=1(人),20个数据为100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在这20位同学中,本学期计划购买课外书的花费的众数为50元,中位数为(50+50)÷2=50(元).故选A.点睛:本题考查了扇形统计图,平均数,中位数与众数,注意掌握通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.4、C【解析】
根据轴对称图形与中心对称图形的概念,结合选项所给图形即可判断.【详解】解:A、不是中心对称图形,也不是轴对称图形,故本选项错误;
B、不是中心对称图形,是轴对称图形,故本选项错误;
C、既是中心对称图形,也是轴对称图形,故本选项正确;
D、是中心对称图形,不是轴对称图形,故本选项错误.
故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、C【解析】
由三角形中位线定理可得EF=AB,FG=BC,HG=DC,EH=AD,再根据题目给出的已知数据即可求出四边形EFGH的周长.【详解】解:∵E,F分别为OA,OB的中点,
∴EF是△AOB的中位线,
∴EF=AB=3,
同理可得:FG=BC=5,HG=DC=6,EH=AD=4,
∴四边形EFGH的周长为=3+5+6+4=18,
故选C.【点睛】本题考查了中点四边形的性质和三角形中位线定理的运用,解题的关键是根据三角形中位线定理得到四边形EFGH各边是原四边形ABCD的各边的一半.6、D【解析】试题解析:由题意得:x+3≠0,解得:x≠-3,故选D.7、D【解析】
根据必然事件、不可能事件、随机事件的概念可区别各类事件,从而判定选项A、C的正误;根据普查和抽样调查的意义可判断出B的正误;根据样本容量的意义可判断出D的正误.【详解】解:A、明天的天气阴是随机事件,故错误;
B、了解本校八年级(2)班学生课外阅读情况适合普查,故错误;
C、任意打开八年级下册数学教科书,正好是第5页是随机事件,故错误;
D、为了解高港区262846人的体质情况,抽查了5000人的体质情况进行统计分析,样本容量是5000,故正确;故选:D.【点睛】本题考查了必然事件、不可能事件、随机事件的概念,普查和抽样调查的意义以及样本容量的意义.8、C【解析】
结合题意分情况讨论:①当点P在AE上时,②当点P在AD上时,③当点P在DC上时,根据三角形面积公式即可得出每段的y与x的函数表达式.【详解】①当点在上时,∵正方形边长为4,为中点,∴,∵点经过的路径长为,∴,∴,②当点在上时,∵正方形边长为4,为中点,∴,∵点经过的路径长为,∴,,∴,,,,③当点在上时,∵正方形边长为4,为中点,∴,∵点经过的路径长为,∴,,∴,综上所述:与的函数表达式为:.故答案为:C.【点睛】本题考查动点问题的函数图象,解决动点问题的函数图象问题关键是发现y随x的变化而变化的趋势.9、C【解析】
先把无理数式子进行化简,化简到6-3的形式,再根据2.236<,再根据不等式的性质求出6-3的范围.【详解】=,因为4.999696<因为2.236<,所以13.416<6,所以10.416<6.所以10至11之间.故选:C.【点睛】考查了无理数的估值,先求出无理数的范围是关键,在结合不等式的性质就可以求出6-3的范围.10、C【解析】
根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、抛掷一枚硬币,落地后正面朝上是随机事件;
B、篮球运动员投篮,投进篮筺是随机事件;
C、自然状态下水从高处流向低处是必然事件;
D、打开电视机,正在播放新闻是随机事件;
故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题(每小题3分,共24分)11、(1)见解析;(2)x=2,<1,2≤x≤1【解析】
(1)列表,描点,连线即可;
(2)利用函数图象得出y=0时,x的值;观察y>2时,函数图象对应的x的取值;观察函数图象,即可确定当﹣1≤y≤0时,x对应的取值范围.【详解】(1)列表:x20y=﹣2x+101描点,连线可得:(2)根据函数图象可得:当y=0时,x=2,故方程﹣2x+1=0的解是x=2;当x<1时,y>2;当﹣1≤y≤0时,相应x的取值范围是2≤x≤1.故答案为:x=2;<1;2≤x≤1.【点睛】本题考查的是作一次函数的图象及一次函数与不等式的关系,能把式子与图象结合起来是关键.12、或.【解析】
由B、D坐标可求得直线BD的解析式,当M点在x轴上方时,则有CM∥AN,则可求出点M的坐标,代入直线BD解析式可求得M点的坐标,当M点在x轴下方时,同理可求得点M点的纵坐标,则可求得M点的坐标;【详解】∵,,∴OA=2,OB=4,∵将△OAB绕O点顺时针旋转90°得到△OCD,∴OC=OA=2,OD=OB=4,AB=CD,可知,,设直线BD的解析式为,把B、D两点的坐标代入得:,解得,∴直线BD的解析式为,当M点在x轴上方时,则有CM∥AN,即CM∥x轴,∴点M到x轴的距离等于点C到x轴的距离,∴M点的纵坐标为2,在中,令,可得,∴,当M点在x轴下方时,M点的纵坐标为-2,在中,令,可得,∴,综上所述,M的坐标为或.【点睛】本题主要考查了一次函数的综合,准确利用知识点是解题的关键.13、三【解析】
根据一次函数的性质,k<0,过二、四象限,b>0,与y轴交于正半轴,综合来看即可得到结论.【详解】因为解析式中,-5<0,3>0,图象过一、二、四象限,故图象不经过第三象限.故答案为:第三象限.14、【解析】
根据三角形中位线定理得到EF=BC=6,根据平行线的性质和角平分线的定义证明ED=EB,计算即可.【详解】∵EF为△ABC的中位线,∴EF∥BC,EF=BC=6,∴∠EDB=∠DBC,∵BD平分∠ABC,∴∠EBD=∠DBC,∴∠EDB=∠EBD,∴ED=EB=AB=4,∴DF=EF−ED=2,故答案为:2【点睛】此题考查三角形中位线定理,解题关键在于得到EF=BC=615、4【解析】
由题意得,在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,从而得出木杆顶端落在地面的位置离木杆底端的距离.【详解】一颗垂直于地面的木杆在离地面处折断,木杆折断前的高度为,木杆顶端落在地面的位置离木杆底端的距离为.故答案为:.【点睛】此题考查了勾股定理的应用,主要考查学生对勾股定理在实际生活中的运用能力.16、1【解析】
根据题意画出图形,根据勾股定理的逆定理进行判断即可.【详解】如图所示:当∠C为直角顶点时,有C1,C2两点;当∠A为直角顶点时,有C3一点;当∠B为直角顶点时,有C4,C1两点,综上所述,共有1个点,故答案为1.【点睛】本题考查的是勾股定理的逆定理,根据题意画出图形,利用数形结合求解是解答此题的关键.17、(+x)(-x)【解析】
理解实数范围内是要运算到无理数为止,即可解题.【详解】解:5-x2=(+x)(-x)【点睛】本题考查了因式分解,属于简单题,注意要求是实数范围内因式分解是解题关键.18、【解析】
分式方程去分母转化为整式方程,表示出分式方程的解,确定出m的范围即可.【详解】解:,去分母,得:,整理得:,显然,当时,方程无解,∴;当时,,∴,解得:;∴的取值范围是:;故答案为:.【点睛】此题考查了分式方程的解,始终注意分母不为0这个条件.三、解答题(共66分)19、(1)作图见解析;(1)作图见解析.【解析】分析:(1)根据中心对称的性质画出△A1B1C1,再写出A1的坐标即可;(1)根据点P、P′的坐标确定出平移规律,再求出A1、B1、C1的坐标,根据网格结构找出点A1、B1、C1的位置,然后顺次连接即可详解:(1)如图,A1的坐标为(1,-3).(1)点睛:本题考查了利用平移变换作图,中心对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键20、y=3x-1,函数图象与y轴的交点坐标(0,-1).【解析】
设一次函数解析式为y=kx+b,把一次函数图象上两个已知点的坐标代入得到,然后解方程组求出k、b即可得到一次函数解析式;计算出一次函数当x=0时所对应的函数值即可这个一次函数的图象与y轴的交点坐标.【详解】设该一次函数解析式为把点(-2,-7)和(2,5)代入得:解得当x=0时,y=-1∴交点坐标为(0,-1)【点睛】此题考查一次函数图象上点的坐标特征,待定系数法求一次函数解析式,解题关键在于利用待定系数法求解析式.21、(1)见解析;(2)见解析.【解析】
(1)由矩形可知OA=OB,由AE∥BD,BE∥AC,即可得出结论;(2)利用矩形和菱形的性质先证△COF≌△EBF,得到OF=BF,再求得∠AOB=60°,利用有一个角是60°的等腰三角形是等边三角形,得到△AOB为等边三角形,最后利用三线合一的性质得到AF平分∠BAO.【详解】证明:(1)∵四边形是矩形,∴则,即∴又∵,∴四边形是平行四边形,∴四边形是菱形;(2)∵四边形是菱形,∴,∴,∵四边形是矩形,∴,∴,在和中∴,∴,∵,∴,∴,∵,∴是等边三角形,∵,∴平分.【点睛】本题考查了矩形的性质,菱形的判定与性质,等边三角形的判定,三线合一的性质.22、(1)49不是“魅力数”,理由详见解析;(9)99、59、89.【解析】
(1)验证49是否满足“被9除余1,被9除余9,被5除余9”这三个条件,若全部满足,则为“魅力数”,若不全满足,则不是“魅力数”;(9)根据样例,先求被9除余1,同时能被9,5都整除的数,最小为8.再求被9除余9.同时能被9,5都整除的数,最小为90.最后求被5除余9,同时能被9,9都整除的数,最小为11.于是数8+90+11=59,再用它减去或加上9,9,5的最小公倍数90的倍数得结果.【详解】解:(1)49不是“魅力数”.理由如下:∵49=14×9+1,∴49被9除余1,不余9,∴根据“魅力数”的定义知,49不是“魅力数”;(9)先求被9除余1,同时能被9,5都整除的数,最小为8.再求被9除余9.同时能被9,5都整除的数,最小为90.最后求被5除余9,同时能被9,9都整除的数,最小为11.∴数8+90+11=59是“魅力数”,∵9、9、5的最小公倍数为90,∴59﹣90=99也是“魅力数”,59+90=89也是“魅力数”,故不大于100的所有的“魅力数”有99、59、89三个数.【点睛】本题考查了数学文化问题,读懂题意,明确定义是解题的关键.23、(1)EF=BE+FD,见解析;(2)ΔCEF周长为23【解析】
(1)在CD的延长线上截取DG=BE,连接AG,证出△ABE≌△ADG,根据全等三角形的性质得出BE=DG,再证明△AEF≌△AGF,得EF=FG,即可得出答案;
(2)连接AC,证明△ABC≌△ADC(SSS).得∠DAC=∠BAC,同理由(1)得EF=BE+DF,可计算△CEF的周长.【详解】证明:(1)在CD的延长线上截取DG=BE,连接AG,如图2,
∵∠ADF=90°,∠ADF+∠ADG=180°,
∴∠ADG=90°,
∵∠B=90°,
∴∠B=∠ADG=90°,
∵BE=DG,AB=AD,
∴△ABE≌△ADG(SAS),
∴∠BAE=∠DAG,AG=AE,
∴∠EAG=∠EAD+∠DAG=∠EAD+∠ABE=∠BAD,
∵∠EAF=12∠BAD,
∵∠EAG=12∠EAG=12(∠E
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《个人防护用品知识》课件
- 财务会计实训报告范文
- 部门调研报告范文
- 《微生物遗传实验》课件
- 孤独的小熊中班课件
- 聘请人力资源顾问咨询合同书2024年度:某企业与人力资源公司之间的合作协议
- 挖掘机转让合同协议书 3篇
- 版个人简单的施工协议标准版可打印
- 2024版工程材料循环运输协议3篇
- 《β受体激动药》课件
- 水、电解质紊乱的诊治【课件】
- 五年级上册数学课件-5简易方程《解方程(例4、5)》 人教新课标 (共20张PPT)
- 数控铣床的对刀操作
- 压裂和测试流程连接推荐做法
- 好书推荐-《枫林渡》课件
- 《金属的化学性质》 完整版课件
- 中图版八年级下册地理知识点
- 小学数学人教五年级上册简易方程用方程解决问题(复习课)教学设计
- 2022年广东省深圳市中考化学试卷(含答案)
- 扫黄打非教育活动台账
- 特种工程中心防喷装置安装使用管理规定(试行)
评论
0/150
提交评论