九年级中考数学复习考点23 菱形_第1页
九年级中考数学复习考点23 菱形_第2页
九年级中考数学复习考点23 菱形_第3页
九年级中考数学复习考点23 菱形_第4页
九年级中考数学复习考点23 菱形_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

考点23菱形考向1菱形的性质1.【2022河南5,3】如图,在菱形ABCD中,对角线AC,BD相交于点O,点E为CD的中点.若OE=3,则菱形ABCD的周长为()A.6 B.12 C.24 D.482.【2022•辽宁鞍山14,3】如图,菱形ABCD的边长为2,∠ABC=60°,对角线AC与BD交于点O,E为OB中点,F为AD中点,连接EF,则EF的长为___________.3.【2022•浙江温州15,5】如图,在菱形中,,.在其内部作形状、大小都相同的菱形和菱形,使点,,,分别在边,,,上,点,在对角线上.若,则的长为.4.菱形的两条对角线的长分别为6和8,则这个菱形的周长为。5.【2022•辽宁大连19,10】如图,四边形ABCD是菱形,点E,F分别在AB,AD上,AE=AF.求证:CE=CF.6.【2022•青海22,10】如图,四边形ABCD为菱形,E为对角线AC上的一个动点(不与点A,C重合),

连接DE并延长交射线AB于点F,连接BE.

(1)求证:

△DCE≌△BCE;(2)求证:

∠AFD=∠EBC.

7.【2022•湖南长沙23,9】如图,在▱ABCD中,对角线AC,BD相交于点O,AB=AD.(1)求证:AC⊥BD;(2)若点E,F分别为AD,AO的中点,连接EF,EF=,AO=2,求BD的长及四边形ABCD的周长.8.【2022•湖南张家界19,6】如图,菱形ABCD的对角线AC、BD相交于点O,点E是CD的中点,连接OE,过点C作CF∥BD交OE的延长线于点F,连接DF.(1)求证:△ODE≌△FCE;(2)试判断四边形ODFC的形状,并写出证明过程.9.【2022•四川遂宁18,8】如图,在菱形ABCD中,对角线AC、BD相交于点O,点E是AD的中点,连接OE,过点D作DF∥AC交OE的延长线于点F,连接AF.(1)求证:△AOE≌△DFE;(2)判定四边形AODF的形状并说明理由.10.【2022•湖南娄底24,9】如图,以BC为边分别作菱形BCDE和菱形BCFG(点C,D,F共线),动点A在以BC为直径且处于菱形BCFG内的圆弧上,连接EF交BC于点O.设∠G=θ.(1)求证:无论θ为何值,EF与BC相互平分;并请直接写出使EF⊥BC成立的θ值.(2)当θ=90°时,试给出tan∠ABC的值,使得EF垂直平分AC,请说明理由.考向2菱形的判定1.【2022•湖北襄阳7,3】如图,▱ABCD的对角线AC和BD相交于点O,下列说法正确的是()A.若OB=OD,则▱ABCD是菱形B.若AC=BD,则▱ABCD是菱形C.若OA=OD,则▱ABCD是菱形D.若AC⊥BD,则▱ABCD是菱形2.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BDB.AB=BCC.AC=BDD.∠1=∠23.【2022•山东泰安11,4】如图,平行四边形ABCD的对角线AC,BD相交于点O,点E为BC的中点,连接EO并延长交AD于点F,∠ABC=60°,BC=2AB。下列结论:①AB⊥AC;②AD=4OE;③四边形AECF是菱形;④,其中正确结论的个数是()A.4B.3C.2D.14.【2022•辽宁铁岭16,3】如图,CD是△ABC的角平分线,过点D分别作AC,BC的平行线,交BC于点E,交AC于点F.若∠ACB=60°,CD=4,则四边形CEDF的周长是.5.【2022•浙江舟山18,6】小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,AC⊥BD,OB=OD。求证:四边形ABCD是菱形”,并将自己的证明过程与同学小洁交流.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.6.【2022•湖南岳阳19,8】如图,点E,F分别在▱ABCD的边AB,BC上,AE=CF,连接DE,DF。请从以下三个条件:①∠1=∠2;②DE=DF;③∠3=∠4中,选择一个合适的作为已知条件,使▱ABCD为菱形.(1)你添加的条件是______(填序号);(2)添加了条件后,请证明▱ABCD为菱形.7.【2022•四川广元19,8】如图,在四边形ABCD中,AB∥CD,AC平分∠DAB,AB=2CD,E为AB中点,连结CE.(1)求证:四边形AECD为菱形;(2)若∠D=120°,DC=2,求△ABC的面积.8.【2022•山东聊城20,8】如图,△ABC中,点D是AB上一点,点E是AC的中点,过点C作CF∥AB,交DE的延长线于点F.(1)求证:AD=CF;(2)连接AF,CD.如果点D是AB的中点,那么当AC与BC满足什么条件时,四边形ADCF是菱形,证明你的结论.9.【2022•吉林长春19,7】如图,在Rt△ABC中,∠ABC=90°,AB<BC.点D是AC的中点,过点作DE⊥AC交BC于点E.延长ED至点F,使得DF=DE,连结AE、AF、CF.(1)求证:四边形AECF是菱形;(2)若,则tan∠BCF的值为.10.【2022•北京21,6】如图,在中,交于点,点在上,.(1)求证:四边形是平行四边形;(2)若求证:四边形是菱形.11.【2022•江苏连云港25,10】如图,四边形ABCD为平行四边形,延长AD到点E,使DE=AD,且BE⊥DC.(1)求证:四边形DBCE为菱形;(2)若△DBC是边长为2的等边三角形,点P、M、N分别在线段BE、BC、CE上运动,求PM+P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论