版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若代数式有意义,则实数x的取值范围是()A.x=0 B.x=3 C.x≠0 D.x≠32.如图,在平面直角坐标系中,Rt△ABC的顶点B、C的坐标分别为(3,4)、(4,2),且AB平行于x轴,将Rt△ABC向左平移,得到Rt△A′B′C′.若点B′、C′同时落在函数y=(x>0)的图象上,则k的值为()A.2 B.4 C.6 D.83.一元二次方程的根是()A. B. C., D.,4.若a<b,则下列结论不一定成立的是()A. B. C. D.5.如图,已知直角三角形的三边长分别为a、b、c,以直角三角形的三边为边(或直径),分别向外作等边三角形、半圆、等腰直角三角形和正方形。那么,这四个图形中,其面积满足的个数是()A.1 B.2 C.3 D.46.下列各组数是三角形的三边长,能组成直角三角形的一组数是()A.2,2,3 B.4,6,8 C.2,3, D.,,7.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.7,24,25 B.,, C.6,8,10 D.9,12,158.若a≤1,则(1-a)3A.(a-1)a-1 B.(1-a)a-1 C.(a-1)9.已知(﹣5,y1),(﹣3,y2)是一次函数y=x+2图象上的两点,则y1与y2的关系是()A.y1<y2 B.y1=y2 C.y1>y2 D.无法比较10.4的平方根是()A.4 B.2 C.-2 D.±211.为了更好地迎接庐阳区排球比赛,某校积极准备,从全校学生中遴选出21名同学进行相应的排球训练,该训练队成员的身高如下表:身高(cm)170172175178180182185人数(个)2452431则该校排球队21名同学身高的众数和中位数分别是(单位:cm)()A.185,178 B.178,175 C.175,178 D.175,17512.下列计算正确的是()A. B.=3 C. D.二、填空题(每题4分,共24分)13.如图,在平行四边形ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是_____度.14.如图,在△ABE中,∠E=30°,AE的垂直平分线MN交BE于点C,且AB=AC,则∠B=________.15.同一坐标系下双曲线y与直线ykx一个交点为坐标为3,1,则它们另一个交点为坐标为_____.16.直线与直线平行,且经过,则直线的解析式为:__________.17.如图,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,DE是AB边的垂直平分线,垂足为D,交边BC于点E,连接AE,则△ACE的周长为________.18.正方形A1B1C1O,A2B2C2C1,A3B3C3C2…、正方形AnBn∁nCn﹣1按如图方式放置,点A1、A2、A3、…在直线y=x+1上,点C1、C2、C3、…在x轴上.已知A1点的坐标是(0,1),则点B3的坐标为_____,点Bn的坐标是_____.三、解答题(共78分)19.(8分)甲乙两人同时登山,甲乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是米/分钟,乙在A地提速时距地面的高度b为米.(2)若乙提速后,乙的速度是甲登山速度的3倍,请求出乙提速后y和x之间的函数关系式.(3)登山多长时间时,乙追上了甲,此时乙距A地的高度为多少米?20.(8分)已知一次函数y=kx+b,当x=2时y的值是﹣1,当x=﹣1时y的值是1.(1)求此一次函数的解析式;(2)若点P(m,n)是此函数图象上的一点,﹣3≤m≤2,求n的最大值.21.(8分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-4,1),B(-1,3),C(-1,1)(1)将△ABC以原点O为旋转中心旋转180°,画出旋转后对应的△A1B1C1;平移△ABC,若A对应的点A2坐标为((2)若△A1B1C(3)在x轴上有一点P是的PA+PB的值最小,直接写出点P的坐标___________;22.(10分)九年一班竞选班长时,规定:思想表现、学习成绩、工作能力三个方面的重要性之比为3:3:1.请根据下表信息,确定谁会被聘选为班长:小明小英思想表现9198学习成绩9696工作能力989123.(10分)如图1,在平面直角坐标系中,O为坐标原点,点A(﹣4,0),直线l∥x轴,交y轴于点C(0,3),点B(﹣4,3)在直线l上,将矩形OABC绕点O按顺时针方向旋转α度,得到矩形OA′B′C′,此时直线OA′、B′C′分别与直线l相交于点P、Q.(1)当α=90°时,点B′的坐标为.(2)如图2,当点A′落在l上时,点P的坐标为;(3)如图3,当矩形OA′B′C′的顶点B′落在l上时.①求OP的长度;②S△OPB′的值是.(4)在矩形OABC旋转的过程中(旋转角0°<α≤180°),以O,P,B′,Q为顶点的四边形能否成为平行四边形?如果能,请直接写出点B′和点P的坐标;如果不能,请简要说明理由.24.(10分)已知:一次函数y=(1﹣m)x+m﹣3(1)若一次函数的图象过原点,求实数m的值.(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.25.(12分)如图,把矩形纸片ABCD置于直角坐标系中,AB∥x轴,BC∥y轴,AB=4,BC=3,点B(5,1)翻折矩形纸片使点A落在对角线DB上的H处得折痕DG.(1)求AG的长;(2)在坐标平面内存在点M(m,-1)使AM+CM最小,求出这个最小值;(3)求线段GH所在直线的解析式.26.已知直线l为x+y=8,点P(x,y)在l上且x>0,y>0,点A的坐标为(6,0).(1)设△OPA的面积为S,求S与x的函数关系式,并直接写出x的取值范围;(2)当S=9时,求点P的坐标;(3)在直线l上有一点M,使OM+MA的和最小,求点M的坐标.
参考答案一、选择题(每题4分,共48分)1、D【解析】分析:根据分式有意义的条件进行求解即可.详解:由题意得,x﹣3≠0,解得,x≠3,故选D.点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.2、B【解析】
设平移的距离为m,由点B、C的坐标可以表示出B′、C′的坐标,B′、C′都在反比例函数的图象上,可得方程,求出m的值,进而确定点B′、C′的坐标,代入可求出k的值.【详解】设Rt△ABC向左平移m个单位得到Rt△A′B′C′.由B(3,4)、C(4,2),得:B′(3-m,4),C′(4-m,2)点B′(3-m,4),C′(4-m,2)都在反比例函数的图象上,∴(3-m)×4=(4-m)×2,解得:m=2,∴B′(1,4),C′(2,2)代入反比例函数的关系式得:k=4,故选:B.【点睛】本题考查了反比例函数的图象上点的坐标特征以及平移的性质,表示出平移后对应点的坐标,建立方程是解决问题的关键.3、D【解析】
利用因式分解法解方程.【详解】∵x(x+3)=0,∴x=0,或x+3=0,解得x=0或x=−3.故选D.【点睛】本题主要考查解一元二次方程-因式分解法,熟悉掌握是关键.4、D【解析】
由不等式的性质进行计算并作出正确的判断.【详解】A.在不等式a<b的两边同时减去1,不等式仍成立,即a−1<b−1,故本选项错误;B.在不等式a<b的两边同时乘以2,不等式仍成立,即2a<2b,故本选项错误;C.在不等式a<b的两边同时乘以,不等号的方向改变,即,故本选项错误;D.当a=−5,b=1时,不等式a2<b2不成立,故本选项正确;故选:D.【点睛】本题考查不等式的性质,在利用不等式的性质时需注意,在给不等式的两边同时乘以或除以某数(或式)时,需判断这个数(或式)的正负,从而判断改不改变不等号的方向.解决本题时还需注意,要判断一个结论错误,只需要举一个反例即可.5、D【解析】分析:利用直角△ABC的边长就可以表示出等边三角形S1、S2、S3的大小,满足勾股定理;利用圆的面积公式表示出S1、S2、S3,然后根据勾股定理即可解答;在勾股定理的基础上结合等腰直角三角形的面积公式,运用等式的性质即可得出结论;分别用AB、BC和AC表示出S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、S3的关系.详解:设直角三角形ABC的三边AB、CA、BC的长分别为a、b、c,则c2=a2+b2.第一幅图:∵S3=c2,S1=a2,S2=b2∴S1+S2=(a2+b2)=c2=S3;第二幅图:由圆的面积计算公式知:S3=,S2=,S1=,则S1+S2=+==S3;第三幅图:由等腰直角三角形的性质可得:S3=c2,S2=b2,S1=a2,则S3+S2=(a2+b2)=c2=S1.第四幅图:因为三个四边形都是正方形则:∴S3=BC2=c2,S2=AC2=b2,,S1=AB2=a2,∴S3+S2=a2+b2=c2=S1.故选:D.点睛:此题主要考查了三角形、正方形、圆的面积计算以及勾股定理的应用,解题关键是熟练掌握勾股定理的公式.6、C【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.【详解】解:A、22+22≠32,根据勾股定理的逆定理不是直角三角形,故此选项错误;
B、42+62≠82,根据勾股定理的逆定理不是直角三角形,故此选项错误;
C、22+32=(2,根据勾股定理的逆定理是直角三角形,故此选项正确;
D、()2+()2≠()2,根据勾股定理的逆定理不是直角三角形,故此选项错误.
故选:C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7、B【解析】
根据勾股定理的逆定理,计算每个选项中两个较小数的平方的和是否等于最大数的平方,等于则能组成直角三角形,不等于则不能组成直角三角形.【详解】A.,能组成直角三角形,故此选项错误;B.,不能组成直角三角形,故此选项正确;C.,能组成直角三角形,故此选项错误;D.,能组成直角三角形,故此选项错误;故选:B.【点睛】本题考查了勾股定理逆定理,解答此题关键是掌握勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.8、D【解析】
将(1﹣a)3化为(1﹣a)2•(1﹣a),利用二次根式的性质进行计算即可.【详解】若a≤1,有1﹣a≥0;则(1-a)3=(1-a)2故选D.【点睛】本题考查了二次根式的意义与化简.二次根式a2规律总结:当a≥0时,a2=a;当a≤0时,9、C【解析】
k=-<0,k<0时,y将随x的增大而减小.【详解】解:∵k=-<0,∴y将随x的增大而减小.∵-5<-3,
∴y1>y1.
故选C.【点睛】本题考查一次函数的图象性质:当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.10、D【解析】∵,∴4的平方根是,故选D.11、D【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.【详解】解:因为175出现的次数最多,所以众数是:175cm;因为第十一个数是175,所以中位数是:175cm.故选:D.【点睛】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.12、D【解析】
根据二次根式的运算法则逐一计算可得.【详解】解:A、、不是同类二次根式,不能合并,此选项错误;B、3﹣=2,此选项错误;C、×=,此选项错误;D、=,此选项正确;故选D.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.二、填空题(每题4分,共24分)13、65°.【解析】
利用平行四边形对角相等和邻角互补先求出∠BCD和∠D,再利用等边对等角的性质解答.【详解】在平行四边形ABCD中,∠A=130°,∴∠BCD=∠A=130°,∠D=180°-130°=50°,∵DE=DC,∴∠ECD=(180°-50°)=65°,∴∠ECB=130°-65°=65°.故答案为65°.14、60°【解析】分析:根据线段的垂直平分线的性质得到CA=CE,根据等腰三角形的性质得到∠CAE=∠E,根据三角形的外角的性质得到∠ACB=2∠E,根据等腰三角形的性质得到∠B即可.详解:∵MN是AE的垂直平分线,∴CA=CE,∴∠CAE=∠E,∴∠ACB=2∠E,∵AB=AC,∴∠B=∠ACB=2∠E=60°,故答案为:60°点睛:本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15、【解析】
反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【详解】解:∵同一坐标系下双曲线y与直线ykx一个交点为坐标为3,1,∴另一交点的坐标是(-3,1).
故答案是:(-3,1).【点睛】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握.16、【解析】
由直线与直线平行,可知k=1,然后把代入中即可求解.【详解】∵直线与直线平行,∴k=1,把代入,得1+b=4,∴b=1,∴.故答案为:.【点睛】本题考查了两条直线的平行问题:若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.例如:若直线y1=k1x+b1与直线y1=k1x+b1平行,那么k1=k1.也考查了一次函数图像上点的坐标满足一次函数解析式.17、1【解析】
由DE是AB边的垂直平分线,可得AE=BE,又由在直角△ABC中,∠BAC=90°,AB=8,AC=6,利用勾股定理即可求得BC的长,继而由△ACE的周长=AC+BC,求得答案.【详解】解:∵DE是AB边的垂直平分线,
∴AE=BE,
∵在直角△ABC中,∠BAC=90°,AB=8,AC=6,
∴BC==10,∴△ACE的周长为:AC+AE+CE=AC+BE+CE=AC+BC=6+10=1.
故答案为:1.【点睛】本题考查,线段垂直平分线的性质以及勾股定理.此题难度不大,注意掌握数形结合思想与转化思想的应用.18、(7,4)(2n﹣1,2n﹣1).【解析】
根据一次函数图象上点的坐标特征可得出点A1的坐标,结合正方形的性质可得出点B1的坐标,同理可得出点B2、B3、B4、…的坐标,再根据点的坐标的变化即可找出点Bn的坐标.【详解】当x=0时,y=x+1=1,∴点A1的坐标为(0,1).∵四边形A1B1C1O为正方形,∴点B1的坐标为(1,1).当x=1时,y=x+1=2,∴点A2的坐标为(1,2).∵四边形A2B2C2C1为正方形,∴点B2的坐标为(3,2).同理可得:点A3的坐标为(3,4),点B3的坐标为(7,4),点A4的坐标为(7,8),点B4的坐标为(15,8),…,∴点Bn的坐标为(2n﹣1,2n﹣1).故答案为:(7,4),(2n﹣1,2n﹣1)【点睛】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型中点的坐标,根据一次函数图象上点的坐标特征结合正方形的性质找出点Bn的坐标是解题的关键.三、解答题(共78分)19、(1)10,1;(2)y=1x﹣1;(3)登山6.5分钟,乙追上了甲,此时乙距A地的高度为135米.【解析】
根据函数图象由甲走的路程除以时间就可以求出甲的速度;根据函数图象可以求出乙在提速前每分离开地面的高度是15米,就可以求出b的值;(2)先根据乙的速度求出乙登上山顶的时间,求出B点的坐标,由待定系数法就可以求出解析式;
(3)由(2)的解析式建立方程求出其解就可以求出追上的时间,就可以求出乙离地面的高度,再减去A地的高度就可以得出结论.【详解】解:(1)10,1(2)设乙提速后的函数关系式为:y=kx+b,由于乙提速后是甲的3倍,所以k=1,且图象经过(2.1)所以1=2×1+b解得:b=﹣1所以乙提速后的关系式:y=1x﹣1.(3)甲的关系式:设甲的函数关系式为:y=mx+n,将n=100和点(20,10)代入,求得y=10x+100;由题意得:10x+100=1x﹣1解得:x=6.5,把x=6.5代入y=10x+100=165,相遇时乙距A地的高度为:165﹣1=135(米)答:登山6.5分钟,乙追上了甲,此时乙距A地的高度为135米.【点睛】本题考查了行程问题的数量关系的运用;待定系数法求一次函数的解析式以及一次函数与一元一次方程的运用,解题关键是求出一次函数的解析式.20、(1)一次函数的解析式为;(2)n的最大值是9.【解析】试题分析:(1)把x=2,y=-1代入函数y=kx+b,得出方程组,求出方程组的解即可;(2)把P点的坐标代入函数y=-2x+3,求出m的值,根据已知得出不等式组,求出不等式组的解集即可.试题解析:(1)依题意得:解得,∴一次函数的解析式为.(2)由(1)可得,.∵点P(m,n)是此函数图象上的一点,∴即,又∵,∴解得,.∴n的最大值是9.21、(1)见解析(2)(-1,-2)(3)P(-134,0)【解析】
(1)根据旋转变换与平移变换的定义作出变换后的对应点,再顺次连接即可;(2)结合对应点的位置,根据旋转变换的性质可得旋转中心;(3)作出点A关于x轴的对称点A’,再连接A’B,与x轴的交点即为P点.【详解】(1)如图所示,△A1B1C(2)如图所示,点Q即为所求,坐标为(-1,-2)(3)如图所示,P即为所求,设A’B的解析式为y=kx+b,将A’(-4,-1),B(-1,3)代入得-1=-4k+b解得k=∴A’B的解析式为y=43x+13当y=0,时,43x+133=0,解得∴P(-134,0)【点睛】此题主要考查作图-旋转变换与平移变换,解题的关键是熟知旋转变换与平移变换的定义与性质,据此找到变换后的对应点.22、小明会被聘选为班长.【解析】
分别求出两人的加权平均数,再进行比较,即可完成解答。【详解】解:小明的成绩=91×0.3+96×0.3+98×0.1=96.2(分);小英的成绩=98×0.3+96×0.3+91×0.1=95.8(分);∵96.2>95.8,∴小明会被聘选为班长.【点睛】本题考查了加权平均数的实际应用,解题的关键在于能够联系实际生活,正确应用所学知识。23、(1)(1,4);(2)(﹣,1);(1)①OP=;②;(4)在矩形OABC旋转的过程中(旋转角0°<α≤180°),以O,P,B′,Q为顶点的四边形能成为平行四边形,此时点B′的坐标为(5,0),点P的坐标为(4,1).【解析】
(1)根据旋转的得到B′的坐标;(2)根据在Rt△OCA′,利用勾股定理即可求解;(1)①根据已知条件得到△CPO≌△A′PB′,设OP=x,则CP=A′P=4﹣x,在Rt△CPO中,利用OP2=OC2+CP2,即x2=(4﹣x)2+12即可求出x的值,即可求解;②根据S△OPB′=PB′•OC即可求解;(4)当点B′落在x轴上时,由OB′∥PQ,OP∥B′Q,此时四边形OPQB′为平行四边形,再根据平行四边形的性质即可求解.【详解】解:(1)∵A(﹣4,0),B(﹣4,1),∴OA=4,AB=1.由旋转的性质,可知:OA′=OA=4,A′B′=AB=1,∴当α=90°时,点B′的坐标为(1,4).故答案为:(1,4).(2)在Rt△OCA′中,OA′=4,OC=1,∴A′C==,∴当点A′落在l上时,点P的坐标为(﹣,1).故答案为:(﹣,1).(1)①当四边形OA′B′C′的顶点B′落在BC的延长线上时,在△CPO和△A′PB′中,,∴△CPO≌△A′PB′(AAS),∴OP=B′P,CP=A′P.设OP=x,则CP=A′P=4﹣x.在Rt△CPO中,OP=x,CP=4﹣x,OC=1,∴OP2=OC2+CP2,即x2=(4﹣x)2+12,解得:x=,∴OP=.②∵B′P=OP=,∴S△OPB′=PB′•OC=××1=.故答案为:.(4)当点B′落在x轴上时,∵OB′∥PQ,OP∥B′Q,∴此时四边形OPQB′为平行四边形.过点A′作A′E⊥x轴于点E,如图4所示.∵OA′=4,A′B′=1,∴OB′==5,A′E==,OE==,∴点B′的坐标为(5,0),点A′的坐标为(,).设直线OA′的解析式为y=kx(k≠0),将A′(,)代入y=kx,得:=k,解得:k=,∴直线OA′的解析式为y=x.当y=1时,有x=1,解得:x=4,∴点P的坐标为(4,1).∴在矩形OABC旋转的过程中(旋转角0°<α≤180°),以O,P,B′,Q为顶点的四边形能成为平行四边形,此时点B′的坐标为(5,0),点P的坐标为(4,1).【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知一次函数的图像与性质、全等三角形的判定与性质.24、(1)m=1;(2)1<m<1.【解析】
根据一次函数的相关性质进行作答.【详解】(1)∵一次函数图象过原点,∴,解得:m=1(2)∵一次函数的图象经过第二、三、四象限,∴,∴1<m<1.【点睛】本题考查了一次函数的相关性质,熟练掌握一次函数的相关性质是本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 顶岗实习毕业生个人工作总结例文8篇
- 学习部工作总结
- 2022班主任德育工作计划3篇集锦
- 变压器销售年度工作总结
- 网点服务管理
- 办公室副科长的转正总结
- 2022学习新思想做好接班人主题观后感10篇
- 教育实习工作总结
- 老师的感谢信模板集锦八篇
- 计算机专业大学生职业生涯规划书范文六篇
- 产前超声检查技术诊断规范
- 合金车间现场管理制度
- 医院输液大厅提高PDA移动终端使用率品管圈PDCA成果汇报
- 课题学习设计制作长方体形状的包装纸盒1
- 生产用电安全管理细则
- 2023北京昌平五年级(上)期末语文试卷含答案
- 杨家小学音体美测查方案
- (8)议论文阅读-2023届中考语文一轮复习重难点专项训练(含解析)
- 国家电网公司工资收入管理办法
- 识破魔鬼的作为
- 职业健康安全生产法律法规及其他相关要求适用性和符合性评价一览表
评论
0/150
提交评论