版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,在平行四边形ABCD中,F,G分别为CD,AD的中点,BF=2,BG=3,,则BC的长度为()A. B. C.2.5 D.2.如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为()A. B. C. D.3.下列等式成立的是()A. B. C. D.4.若点A(3-m,n+2)关于原点的对称点B的坐标是(-3,2),则m,n的值为()A.m=-6,n=-4 B.m=O,n=-4C.m=6,n=4 D.m=6,n=-45.下列二次根式是最简二次根式的是()A. B. C. D.6.如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,与BC相交于点F,过点B作BE⊥AD于点D,交AC延长线于点E,过点C作CH⊥AB于点H,交AF于点G,则下列结论:⑤;正确的有()个.A.1 B.2 C.3 D.47.如图,O是▱ABCD对角线的交点,,,,则的周长是A.17 B.13 C.12 D.108.点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0),设△OPA的面积为S.当S=12时,则点P的坐标为()A.(6,2) B.(4,4) C.(2,6) D.(12,﹣4)9.矩形是轴对称图形,对称轴可以是()A. B. C. D.10.一个多边形的内角和是外角和的4倍,则这个多边形的边数是()A.8 B.9 C.10 D.1111.如图1,在▱ABCD中,对角线AC,BD相交于点0,添加下列条件后,能使▱ABCD成为矩形的是()A.AB=AD B.AC=BD C.BD平分∠ABC D.AC⊥BD12.下列计算正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,中,,以为斜边作,使分别是的中点,则__________.14.将二次函数化成的形式,则__________.15.在一个不透明的袋子里装有3个白色乒乓球和若干个黄色乒乓球,若从这个袋子里随机摸出一个乒乓球,恰好是黄球的概率为0.7,则袋子内共有乒乓球__________个。16.如图,在△ABC中,D、E分别是边AB、AC的中点,BC=8,则DE=.17.已知一次函数y=-2x+9的图象经过点(a,3)则a=_______.18.若一组数据1,2,3,x,0,3,2的众数是3,则这组数据的中位数是_____.三、解答题(共78分)19.(8分)如图,在中,,平分,垂直平分于点,若,求的长.20.(8分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上,试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形(1)以A为顶点的平行四边形;(2)以A为对角线交点的平行四边形.21.(8分)以下是八(1)班学生身高的统计表和扇形统计图,请回答以下问题.八(1)班学生身高统计表组别身高(单位:米)人数第一组1.85以上1第二组第三组19第四组第五组1.55以下8(1)求出统计表和统计图缺的数据.(2)八(1)班学生身高这组数据的中位数落在第几组?(3)如果现在八(1)班学生的平均身高是1.63,已确定新学期班级转来两名新同学,新同学的身高分别是1.54和1.77,那么这组新数据的中位数落在第几组?22.(10分)2019年4月23日世界读书日这天,滨江初二年级的学生会,就2018年寒假读课外书数量(单位:本)做了调查,他们随机调查了甲、乙两个班的10名同学,调查过程如下收集数据甲、乙两班被调查者读课外书数量(单位:本)统计如下:甲:1,9,7,4,2,3,3,2,7,2乙:2,6,6,3,1,6,5,2,5,4整理、描述数据绘制统计表如下,请补全下表:班级平均数众数中位数方差甲43乙63.2分析数据、推断结论(1)该校初二乙班共有40名同学,你估计读6本书的同学大概有_____人;(2)你认为哪个班同学寒假读书情况更好,写出理由.23.(10分)如图,,是上的一点,且,.求证:≌24.(10分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣1,﹣3),C(3,n),交y轴于点B,交x轴于点D.(1)求反比例函数y=和一次函数y=kx+b的表达式;(2)连接OA,OC.求△AOC的面积.25.(12分)如图,在□ABCD中,点E、F在对角线BD上,且BE=DF,(1)求证:AE=CF;(2)求证:四边形AECF是平行四边形.26.在直角坐标系中,正方形OABC的边长为8,连结OB,P为OB的中点.(1)直接写出点B的坐标B(,)(2)点D从B点出发,以每秒1个单位长度的速度在线段BC上向终点C运动,连结PD,作PD⊥PE,交OC于点E,连结DE.设点D的运动时间为秒.①点D在运动过程中,∠PED的大小是否发生变化?如果变化,请说明理由如果不变,求出∠PED的度数②连结PC,当PC将△PDE分成的两部分面积之比为1:2时,求的值.
参考答案一、选择题(每题4分,共48分)1、A【解析】
延长AD、BF交于E,过点E作EM⊥BG,根据F是中点得到△CBF≌△DEF,得到BE=2BF=4,根据得到BM=BE=2,ME=2,故MG=1,再根据勾股定理求出EG的长,再得到DE的长即可求解.【详解】延长AD、BF交于E,∵F是中点,∴CF=DF,又AD∥BC,∴∠CBF=∠DEF,又∠CFB=∠DFE,∴△CBF≌△DEF,∴BE=2BF=4,过点E作EM⊥BG,∵,∴∠BEM=30°,∴BM=BE=2,ME=2,∴MG=BG-BM=1,在Rt△EMG中,EG==∵G为AD中点,∴DG=AD=DE,∴DE==,故BC=,故选A.【点睛】此题主要考查平行四边形的线段求解,解题的关键是熟知全等三角形的判定及勾股定理的运用.2、B【解析】
根据勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出△ABC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】根据勾股定理,AB=,BC=,AC=,∵AC2+BC2=AB2=26,∴△ABC是直角三角形,∵点D为AB的中点,∴CD=AB=.故选B.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,勾股定理逆定理的应用,判断出△ABC是直角三角形是解题的关键.3、B【解析】
根据二次根式的加减、乘除运算法则以及二次根式的性质解答即可.【详解】解:A.不是同类二次根式,故A错误;B.,故B正确;C.,故B错误;D.,故D错误.故答案为B.【点睛】本题考查了二次根式的加减、乘除运算法则以及二次根式的性质,牢记并灵活运用运算法则和性质是解答本题的关键.4、B【解析】试题分析:关于原点对称的两点的横纵坐标分别互为相反数,则3-m=3,n+2=-2,解得:m=0,n=-4.考点:原点对称5、B【解析】
根据最简二次根式的概念即可求出答案.【详解】(A)原式=2,故A不是最简二次根式;(C)原式=2,故B不是最简二次根式;(D)原式=,故D不是最简二次根式;故选:B.【点睛】此题考查最简二次根式,解题关键在于掌握运算法则6、D【解析】
①②正确,只要证明△BCE≌△ACF,△ADB≌△ADE即可解决问题;③正确,只要证明GB=GA,得到△BDG是等腰直角三角形,即可得到;④正确,求出∠CGF=67.5°=∠CFG,则CF=CG=CE,然后AE=AC+CE=BC+CG,即可得到结论;⑤错误,作GM⊥AC于M.利用角平分线的性质定理即可证明;【详解】解:∵AD⊥BE,∴∠FDB=∠FCA=90°,∵∠BFD=∠AFC,∴∠DBF=∠FAC,∵∠BCE=∠ACF=90°,BC=AC,∴△BCE≌△ACF,∴EC=CF,AF=BE,故①正确,∵∠DAB=∠DAE,AD=AD,∠ADB=∠ADE=90°,∴△ADB≌△ADE,∴BD=DE,∴AF=BE=2BD,故②正确,如图,连接BG,∵CH⊥AB,AC=AB,∴BH=AH,∠BHG=∠AHG=90°∵HG=HG,∴△AGH≌△BGH,∴BG=AG,∠GAH=∠GBH=22.5°,∴∠DGB=∠GAH+∠GBH=45°,∴△BDG是等腰直角三角形,∴BD=DG=DE;故③正确;由△ACH是等腰直角三角形,∴∠ACG=45°,∴∠CGF=45°+22.5°=67.5°,∵∠CFG=∠DFB=90°-22.5°=67.5°,∴∠CGF=∠CFG,∴CG=CF,∵AB=AE,BC=AC,CE=CF=CG,又∵AE=AC+CE,∴AB=BC+CG,故④正确;作GM⊥AC于M,由角平分线性质,GH=GM,∴△AGH≌△AGM(HL),∴△AGH的面积与△AGM的面积相等,故⑤错误;综合上述,正确的结论有:①②③④;故选择:D.【点睛】本题考查全等三角形的判定和性质、直角三角形斜边中线的性质、等腰直角三角形的性质、角平分线的性质定理等知识,解题的关键是熟练掌握基本知识,属于中考选择题中的压轴题.7、C【解析】
利用平行四边形的性质和勾股定理易求BO的长即可.【详解】∵▱ABCD的对角线AC与BD相交于点O,∴AO=CO=3∵AB⊥AC,AB=4,AC=6,∴BO==1.∴△AOB的周长=AB+AO+BO=4+3+1=12,故选C.【点睛】本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.8、B【解析】
根据题意画出图形,根据三角形的面积公式即可得出S关于y的函数关系式,由函数关系式及点P在第一象限即可得出x的值,即可解答【详解】△OPA的面积为S==12,所以,y=4,由x+y=8,得x=4,所以,P(4,4),选B。【点睛】此题考查坐标与图形性质,解题关键在于得出x的值9、D【解析】
根据轴对称图形的概念求解.矩形是轴对称图形,可以左右重合和上下重合.【详解】解:矩形是轴对称图形,可以左右重合和上下重合,故可以是矩形的对称轴,故选:D.【点睛】此题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,两边图象折叠后可重合.10、C【解析】
利用多边形的内角和公式及外角和定理列方程即可解决问题.【详解】设这个多边形的边数是n,则有(n-2)×180°=360°×4,所有n=1.故选C.【点睛】熟悉多边形的内角和公式:n边形的内角和是(n-2)×180°;多边形的外角和是360度.11、B【解析】
根据矩形的判定方法逐一进行分析即可.【详解】A.若添加AB=AD,根据有一组邻边相等的平行四边形是菱形,可判断四边形ABCD为菱形,故不符合题意;B.若添加AC=BD,根据对角线相等的平行四边形是矩形,可判断四边形ABCD是矩形,故符合题意;C.若添加BD平分∠ABC,则有∠ABD=∠DBC,∵平行四边形ABCD中,AB//CD,∴∠ABD=∠CDB,∴∠DBC=∠CDB,∴BC=DC,∴平行四边形ABCD是菱形,故不符合题意;D.若添加AC⊥BD,根据对角线互相垂直的平行四边形是菱形,可判断四边形ABCD是菱形,故不符合题意,故选B.【点睛】本题考查了矩形的判定,菱形的判定,熟练掌握相关的判定定理是解题的关键.12、C【解析】
根据二次根式的性质和计算法则分别计算可得正确选项。【详解】解:A、不是同类二次根式,不能合并,故本选项错误;B、不是同类二次根式,不能合并,故本选项错误;C、正确;D、,故故本选项错误。故选:C【点睛】本题考查了二次根式的性质和运算,掌握运算法则是关键。二、填空题(每题4分,共24分)13、【解析】
先根据题意判断出△DEF的形状,由平行线的性质得出∠EFC的度数,再由三角形外角的性质求出∠DFC的度数,再根据三角形内角和定理即可得出结论.【详解】∵E、F分别是BC、AC的中点,∠CAD=∠CAB=28°,∴EF是△ABC的中位线,∴EF=AB,∠EFC=∠CAB=26°.∵AB=AC,△ACD是直角三角形,点E是斜边AC的中点,∴DF=AF=CF,∴DF=EF,∠CAD=∠ADF=28°.∵∠DFC是△AFD的外角,∴∠DFC=28°+28°=56°,∴∠EFD=∠EFC+∠DFC=28°+56°=84°,∴∠EDF==48°.故答案为:48°.【点睛】本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.14、【解析】
利用配方法,加上一次项系数的一半的平方来凑完全平方式,即可把一般式转化为顶点式.【详解】解:,,.故答案为:.【点睛】本题考查了二次函数的三种形式:一般式:,顶点式:;两根式:.正确利用配方法把一般式化为顶点式是解题的关键.15、10【解析】
分析:设有x个黄球,利用概率公式可得,解出x的值,可得黄球数量,再求总数即可.【详解】解:设黄色的乒乓球有x个,则:解得:x=7经检验,x=7是原分式方程的解∴袋子里共有乒乓球7+3=10个【点睛】:此题主要考查了概率公式,关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数.16、1【解析】试题分析:已知D、E分别是边AB、AC的中点,BC=8,根据三角形的中位线定理得到DE=12考点:三角形中位线定理.17、3【解析】
将(a,3)代入一次函数解析式y=-2x+9进行计算即可得.【详解】把(a,3)代入一次函数解析式y=-2x+9,得3=-2a+9,解得:a=3,故答案为:3.【点睛】本题考查了一次函数图象上点的坐标特征,熟知一次函数图象上的点的坐标一定满足该函数的解析式是解题的关键.18、1【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.【详解】解:∵1,1,3,x,0,3,1的众数是3,∴x=3,先对这组数据按从小到大的顺序重新排序0,1,1,1,3,3,3,位于最中间的数是1,∴这组数的中位数是1.故答案为:1;【点睛】本题考查了等腰直角三角形,勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键.三、解答题(共78分)19、的长为.【解析】
根据角平分线的性质可得DE=CE,根据垂直平分线可得AE=BE,进而得到,设,则,根据直角三角形30°角所对直角边为斜边的一半得到关于x的方程,然后求解方程即可.【详解】解:设,则,平分,,,,又垂直平分,,,在中,,,,即,解得.即的长为.【点睛】本题主要考查角平分线的性质,垂直平分线的性质,直角三角形30°角所对直角边为斜边的一半等,解此题的关键在于熟练掌握其知识点.20、(1)见解析;(2)见解析【解析】
(1)直接利用平行四边形的性质分析得出答案;(2)直接利用菱形的性质得出符合题意的答案.【详解】解:(1)如图所示:平行四边形ABCD即为所求;(2)如图所示:平行四边形DEFM即为所求.【点睛】此题考查应用设计与作图,正确应用网格分析是解题关键.21、(1)统计表中:第二组人数4人,第四组人数18人,扇形图中:第三组38%,第五组:16%;(2)第四组;(3)第四组.【解析】
(1)用第一组的人数和除以对应的百分比求出总人数,再用总人数分别乘以第二、四组的百分比求得其人数,根据百分比的概念求出第三、五组的百分比可得答案;
(2)根据中位数的概念求解可得;
(3)根据中位数的概念求解可得.【详解】解:(1)第一组人数为1,占被调查的人数百分比为2%,
∴被调查的人数为1÷2%=50(人),
则第二组人数为50×8%=4,第四组人数为50×36%=18(人),
第三组对应的百分比为×100%=38%,第五组的百分比为×100%=16%;
(2)被调查的人数为50人,中位数是第25和26个数据平均数,而第一二三组数据有24个,∴第25和26个数都落在第四组,所以八(1)班学生身高这组数据的中位数落在第四组;
(3)新学期班级转来两名新同学,此时共有52名同学,1.54在第五组,1.77在第二组.而新数据的第一二三组数据有25个数据,第26、27个数据都落在第四组,新数据的中位数是第26、27个数据的平均数,
所以新数据的中位数落在第四组.【点睛】本题考查了扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.22、统计图补全见解析(1)12(2)乙班,理由见解析【解析】
根据平均数、众数、中位数、方差的概念填表(1)根据样本求出读6本书的学生的占比,再用初二乙班总人数乘以占比即可求解;(2)根据方差的性质进行判断即可.【详解】甲组的众数是2,乙组中位数是乙组的平均数:甲组的方差:补全统计表如下:班级平均数众数中位数方差甲4236.6乙464.53.2(1)(人)故估计读6本书的同学大概有12人;(2)乙班,乙班的方差较小,说明乙班学生普遍有阅读意识,而甲班方差较大,说明甲班虽然存在一部分读书意识较强的同学,但也存在一部分读书意识淡薄的同学.【点睛】本题考查了统计图的问题,掌握平均数、众数、中位数、方差的概念以及性质是解题的关键.23、证明见解析.【解析】
此题比较简单,根据已知条件,利用直角三角形的HL可以证明题目结论.【详解】证明:∵∠1=∠2∴DE=CE∵∠A=∠B=90°∴AE=BC∴Rt△ADE≌Rt△BEC(HL)【点睛】此题考查直角三角形全等的判定,解题关键在于掌握判定定理24、(1)y=,y=x﹣2;(2)1.【解析】
(1)先把A点坐标代入y=中求出m得到反比例函数的解析式是y=,再确定C的坐标,然后利用待定系数法求一次函数解析式;(2)先确定D(2,0),然后根据三角形面积公式,利用S△AOC=S△OCD+S△AOD进行计算.【详解】解:(1)把A(﹣1,﹣3)代入y=得m=﹣1×(﹣3)=3,则反比例函数的解析式是y=,当x=3代入y==1,则C的坐标是(3,1);把A(﹣1,﹣3),C(3,1)代入y=kx+b得,解得,所以一次函数的解析式是:y=x﹣2;(2)x=0,x﹣2=0,解得x=2,则D(2,0),所以S△AOC=S△OCD+S△AOD=×2×(1+3)=1.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.25、(1)证明见试题解析;(2)证明见试题解析.【解析】
(1)根据平行四边形的性质可得AB=CD,AB∥CD,然后可证明∠ABE=∠CDF,再利用SAS来判定△ABE≌△DCF,从而得出AE=CF.(2)首先根据全等三角形的性质可得∠AEB=∠CFD,根据等角的补角相等可得∠AEF=∠CFE,然后证明AE∥CF,从而可得四边形AECF是平行四边形.【详解】(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠ABE=∠CDF.在△ABE和△CDF中,,∴△ABE≌△DCF(SAS).∴AE=CF.(2)∵△ABE≌△DCF,∴∠AEB=∠CFD,∴∠AEF=∠CFE,∴AE∥CF,∵AE=CF,∴四边形AECF是平行四边形.26、(1)8,8;(2)①∠PED的大小不变,∠PED=45°;②t的值为:秒或秒.【解析】
(1)根据正方形的边长
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年募捐活动总结(2篇)
- 卸氨时的安全管理规定(2篇)
- 2025年公司业务部个人工作总结(3篇)
- 小学推普周活动方案(六篇)
- 设备的电力装置调试工安全操作规程(2篇)
- 游泳馆管理制度细则例文(二篇)
- 办公室职业健康安全管理职责模版(2篇)
- 2025年法律顾问工作计划(3篇)
- 2025年健康教育年度工作总结样本(2篇)
- 2025年上半年采购员工作总结模版(2篇)
- 老旧小区改造工程安全管理体系管理制度及措施
- 2024年山西省晋中市公开招聘警务辅助人员(辅警)笔试摸底测试(3)卷含答案
- 2024夏令营项目家长沟通与反馈服务协议3篇
- 文史哲与艺术中的数学知到智慧树章节测试课后答案2024年秋吉林师范大学
- 2024年秋季新人教版七年级上册数学全册教案
- 13485质量管理培训
- 9《复活(节选)》练习 (含答案)统编版高中语文选择性必修上册
- 工程主合同补充协议书范本(2篇)
- 智慧楼宇IBMS整体解决方案
- 《客房服务与管理》课程标准课程内容与要求
- GB 26920-2024商用制冷器具能效限定值及能效等级
评论
0/150
提交评论