版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列四边形中,对角线相等且互相垂直平分的是(
)A.平行四边形 B.正方形 C.等腰梯形 D.矩形2.已知菱形的两条对角线分别为6和8,则菱形的面积为()A.48 B.25 C.24 D.123.样本数据3、6、a、4、2的平均数是5,则这个样本的方差是(
)A.8 B.5 C. D.34.下列各式计算正确的是A. B.C. D.5.如果,那么下列各式一定不成立的是()A. B. C. D.6.若为正比例函数,则a的值为()A.4 B. C. D.27.在△ABC中,AB=15,AC=13,BC上的高AD长为12,则△ABC的面积为()A.84 B.24 C.24或84 D.42或848.在平面直角坐标系中,点0,-5在()A.x轴正半轴上 B.x轴负半轴上 C.y轴正半轴上 D.y轴负半轴上9.下列各组数,可以作为直角三角形的三边长的是()A.2,3,4 B.3,4,6 C.4,5,6 D.6,8,1010.关于的一元二次方程有两个不相等的实数根,则的取值范围是()A. B.且 C.且 D.11.如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()A.35° B.45° C.50° D.55°12.如图,在正方形中,相交于点,分别为上的两点,,,分别交于两点,连,下列结论:①;②;③;④,其中正确的是()A.①② B.①④ C.①②④ D.①②③④二、填空题(每题4分,共24分)13.使有意义的x的取值范围是.14.如图,在中,是的角平分线,,垂足为E,,则的周长为________.15.若双曲线在第二、四象限,则直线y=kx+2不经过第_____象限。16.若关于x的分式方程无解,则m的值为__________.17.如图,在△ABC中,∠BAC=60°,AD平分∠BAC,若AD=6,DE⊥AB,则DE的长为_____________.18._____.三、解答题(共78分)19.(8分)解下列不等式或不等式组(1);(2)20.(8分)射击队为从甲、乙两名运动员选拔一人参加运动会,对他们进行了六次测试,测试成绩如下表(单位:环)第一次第二次第三次第四次第五次第六次甲10898109乙107101098(1)由表格中的数据,计算出甲的平均成绩是环,乙的成绩是环.(2)结合平均水平与发挥稳定性你认为推荐谁参加比赛更适合,请说明理由.21.(8分)在平面宜角坐标系xOy中,直线y=x+4与x轴,y轴交于点A,B.第一象限内有一点P(m,n),正实数m,n满足4m+3n=12(1)连接AP,PO,△APO的面积能否达到7个平方单位?为什么?(2)射线AP平分∠BAO时,求代数式5m+n的值;(3)若点A′与点A关于y轴对称,点C在x轴上,且2∠CBO+∠PA′O=90°,小慧演算后发现△ACP的面积不可能达到7个平方单位.请分析并评价“小薏发现”.22.(10分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.23.(10分)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.24.(10分)如图,在四边形AECF中,∠E=∠F=90°.CE、CF分别是△ABC的内,外角平分线.(1)求证:四边形AECF是矩形.(2)当△ABC满足什么条件时,四边形AECF是正方形?请说明理由.25.(12分)如图,一次函数的图象与反比例函数的图象交于点和点.(1)求,的值;(2)根据图象判断,当不等式成立时,的取值范围是什么?26.如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E.F.(1)求证:△BCF≌△BA1D.(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.
参考答案一、选择题(每题4分,共48分)1、B【解析】
解:对角线相等且互相垂直平分的四边形是正方形,故选B.【点睛】本题考查等腰梯形的性质;平行四边形的性质;矩形的性质;正方形的性质.2、C【解析】
根据菱形的面积等于对角线乘积的一半列式进行计算即可得解.【详解】解:∵菱形的两条对角线的长度分别为6和8,
∴它的面积=×6×8=1.
故选:C.【点睛】本题考查了菱形的性质,菱形的面积可以用对角线乘积的一半求解,也可以利用底乘以高求解.3、A【解析】
本题可先求出a的值,再代入方差的公式即可.【详解】∵3、6、a、4、2的平均数是5,
∴a=10,
∴方差.
故选A.【点睛】本题考查的知识点是平均数和方差的求法,解题关键是熟记计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.4、D【解析】
根据二次根式的运算法则即可求解.【详解】A.不能计算,故错误;B.不能计算,故错误;C.,故错误;D.,正确故选D.【点睛】此题主要考查二次根式的运算,解题的关键是熟知二次根式的运算法则.5、C【解析】
根据不等式的性质,可得答案.【详解】、两边都减,不等号的方向不变,正确,不符合选项;、因为,所以,正确,不符合选项;、因为,所以,错误,符合选项;、因为,所以(),正确,不符合选项.故选:.【点睛】本题考查了不等式的性质的应用,不等式的两边都加上或减去同一个数,不等号的方向不变;不等式的两边都乘以或除以同一个负数,不等号的方向要改变.6、C【解析】
根据正比例函数的定义条件:为常数且,自变量次数为,即可列出有关的方程,求出的值.【详解】根据正比例函数的定义:,解得:,又,得,故.故选:.【点睛】本题主要考查了正比例函数的定义,难度不大,注意基础概念的掌握.7、C【解析】
由于高的位置不确定,所以应分情况讨论.【详解】(1)△ABC为锐角三角形,高AD在三角形ABC的内部,∴BD==9,CD==5,∴△ABC的面积为=84,(2)△ABC为钝角三角形,高AD在三角形ABC的外部,∴BD==9,CD==5,∴△ABC的面积为=24,故选C.【点睛】此题主要考察勾股定理的应用,解题的关键是根据三角形的形状进行分类讨论.8、D【解析】
依据坐标轴上的点的坐标特征即可求解.【详解】解:∵点(1,-5),横坐标为1∴点(1,-5)在y轴负半轴上故选:D.【点睛】本题考查了点的坐标:坐标平面内的点与有序实数对是一一对应的关系;解题时注意:x轴上点的纵坐标为1,y轴上点的横坐标为1.9、D【解析】
分别求出两小边的平方和和最长边的平方,看看是否相等即可.【详解】∵22+32≠42,∴以2,3,4为边的三角形不是直角三角形,故本选项不符合题意;B、∵32+42≠62,∴以3,4,6为边的三角形不是直角三角形,故本选项不符合题意;C、∵42+52≠62,∴以4,5,6为边的三角形不是直角三角形,故本选项不符合题意;D、∵62+82=102,∴以6,8,10为边的三角形是直角三角形,故本选项符合题意。故选D.【点睛】本题考查了勾股定理的逆定理,能够熟记勾股定理的逆定理的内容是解此题的关键.10、B【解析】
由方程根的情况,根据判别式可得到关于的不等式,则可求得取值范围;【详解】解:因为一元二次方程有两个不相等的实数根,所以>0,且,所以>0,解得:<,又因为,所以,所以且,故选B.【点睛】本题考查利用一元二次方程的根的判别式求字母的取值范围,同时考查一元二次方程定义中二次项系数不为0,掌握知识点是解题关键.11、D【解析】
延长PF交AB的延长线于点G.根据已知可得∠B,∠BEF,∠BFE的度数,再根据余角的性质可得到∠EPF的度数,从而不难求得∠FPC的度数.【详解】解:延长PF交AB的延长线于点G.在△BGF与△CPF中,∴△BGF≌△CPF(ASA),∴GF=PF,∴F为PG中点.又∵由题可知,∠BEP=90°,∴(直角三角形斜边上的中线等于斜边的一半),∵(中点定义),∴EF=PF,∴∠FEP=∠EPF,∵∠BEP=∠EPC=90°,∴∠BEP﹣∠FEP=∠EPC﹣∠EPF,即∠BEF=∠FPC,∵四边形ABCD为菱形,∴AB=BC,∠ABC=180°﹣∠A=70°,∵E,F分别为AB,BC的中点,∴BE=BF,易证FE=FG,∴∠FGE=∠FEG=55°,∵AG∥CD,∴∠FPC=∠EGF=55°故选:D.【点睛】此题主要考查了菱形的性质的理解及运用,灵活应用菱形的性质是解决问题的关键.12、D【解析】
①易证得△ABE≌△BCF(ASA),则可得结论①正确;②由△ABE≌△BCF,可得∠FBC=∠BAE,证得∠BAE+∠ABF=90°即可知选项②正确;③根据△BCD是等腰直角三角形,可得选项③正确;④证明△OBE≌△OCF,根据正方形的对角线将面积四等分,即可得出选项④正确.【详解】解:①∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,在△ABE和△BCF中,AB=BC,∠ABE=∠BCF,BE=CF,∴△ABE≌△BCF(SAS),∴AE=BF,故①正确;②由①知:△ABE≌△BCF,∴∠FBC=∠BAE,∴∠FBC+∠ABF=∠BAE+∠ABF=90°,∴AE⊥BF,故②正确;③∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°,∴△BCD是等腰直角三角形,∴BD=BC,∴CE+CF=CE+BE=BC=,故③正确;④∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,在△OBE和△OCF中,OB=OC,∠OBE=∠OCF,BE=CF,∴△OBE≌△OCF(SAS),∴S△OBE=S△OCF,∴S四边形OECF=S△COE+S△OCF=S△COE+S△OBE=S△OBC=S正方形ABCD,故④正确;故选:D.【点睛】此题考查了正方形的性质,全等三角形的判定与性质以及等腰直角三角形的性质.注意掌握全等三角形的判定与性质是解此题的关键.二、填空题(每题4分,共24分)13、【解析】
根据二次根式的定义可知被开方数必须为非负数,列不等式求解即可.【详解】根据二次根式的定义可知被开方数必须为非负数,列不等式得:x+1≥0,解得x≥﹣1.故答案为x≥﹣1.【点睛】本题考查了二次根式有意义的条件14、;【解析】
在△ACD、△ADE、△DEC都是含有30°的直角三角形,利用边之间的关系,得出各边长,从而得出△ABC的周长.【详解】∵∠C=90°,∠B=30°,DE=1∴在Rt△DEB中,DB=2,EB=∵AD是∠CAB的角平分线∴CD=DE=1,∠CAD=∠DAE=30°∴在Rt△ACD中,AD=2,同理,在Rt△ADE中,AD=2,AE=∴△ABC的周长=AE+EB+BD+DC+CA=3+3故答案为:3+3.【点睛】本题考查含30°角的直角三角形、角平分线的性质,解题关键是得出△ACD、△ADE、△DEC都是含有30°的直角三角形.15、三【解析】分析:首先根据反比例函数的图像得出k的取值范围,然后得出直线所经过的象限.详解:∵反比例函数在二、四象限,∴k<0,∴y=kx+2经过一、二、四象限,即不经过第三象限.点睛:本题主要考查的是一次函数和反比例函数的图像,属于基础题型.对于反比例函数,当k>0时,函数经过一、三象限,当k<0时,函数经过二、四象限;对于一次函数y=kx+b,当k>0,b>0时,函数经过一、二、三象限;当k>0,b<0时,函数经过一、三、四象限;当k<0,b>0时,函数经过一、二、四象限;当k<0,b<0时,函数经过二、三、四象限.16、【解析】
由分式方程无解得到x=5,将其代入化简后的整式方程即可求出答案.【详解】将方程去分母得到:x-2(x-5)=-m,即10-x=-m,∵分式方程无解,∴x=5,将x=5代入10-x=-m中,解得m=-5,故答案为:-5.【点睛】此题考查分式方程无解的情况,正确理解分式方程无解的性质得到整式方程的解是解题的关键.17、1【解析】分析:根据角平分线的性质求出∠DAC=10°,根据直角三角形的性质得出CD的长度,最后根据角平分线的性质得出DE的长度.详解:∵∠BAC=60°,AD平分∠BAC,∴∠DAC=10°,∵AD=6,∴CD=1,又∵DE⊥AB,∴DE=DC=1.点睛:本题主要考查的是直角三角形的性质以及角平分线的性质,属于基础题型.合理利用角平分线的性质是解题的关键.18、【解析】
原式化为最简二次根式,合并即可得到结果.【详解】解:原式=+2=3.故答案为3【点睛】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.三、解答题(共78分)19、;.【解析】
(1)先去分母,再去括号,移项、合并同类项即可;(2)分别求出各不等式的解集,再求出其公共解集即可.【详解】(1)2(x-1)+4x2x-2+4x2x-x2-4x-2.(2)解不等式是:,解不等式得:,所以不等式组的解集为.【点睛】考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20、(1)9,9;(2)甲.【解析】分析:1、首先根据图表得出甲、乙每一次的测试成绩,再利用平均数的计算公式分别求出甲、乙的平均成绩;2、得到甲、乙的平均成绩后,再结合方差的计算公式即可求出甲、乙的方差;接下来结合方差的意义,从稳定性方面进行分析,即可得出结果.详解:(1)甲的平均成绩是:(10+8+9+8+10+9)÷6=9,乙的平均成绩是:(10+7+10+10+9+8)÷6=9;(2)甲的方差=[(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2+(9-9)2]=.乙的方差=[(10-9)2+(7-9)2+(10-9)2+(10-9)2+(9-9)2+(8-9)2]=.推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.点睛:本题考查了平均数以及方差的求法及意义,正确掌握方差的计算公式是解答本题的关键.方差的计算公式为:.21、(1)不能;(2)2;(3)见解析.【解析】
(1)利用一次函数图象上点的坐标特征可求出点A的坐标,由△APO的面积等于7个平方单位可求出n值,代入4m+3n=12中可求出m值为负,由此可得出△APO的面积不能达到7个平方单位;(2)设AP与y轴交于点E,过点E作EF⊥AB于点F,利用面积法及角平分线的性质可求出点E的坐标,由点A,E的坐标,利用待定系数法可求出直线AP的解析式,由m,n满足4m+3n=12可得出直线BP的解析式,联立直线AP,BP的解析式成方程组,通过解方程组可求出m,n的值,再将其代入1m+n中即可得出结论;(3)当点C在x轴正半轴时,由2∠CBO+∠PA′O=20°可得出BC平分∠OBA′,同(2)可求出C的坐标,进而可求出AC的长,利用三角形的面积公式可求出△ACB的面积,由该值大于7可得出:存在点P,使得△ACP的面积等于7个平方单位;当点C在x轴正半轴时,利用对称可得出点C的坐标,进而可求出AC的长,利用三角形的面积公式可求出△ACB的面积,由该值小于7可得出:此种情况下,△ACP的面积不可能达到7个平方单位.综上,此题得解.【详解】(1)△APO的面积不能达到7个平方单位,理由如下:当y=0时,x+4=0,解得:x=-3,∴点A的坐标为(-3,0).∴S△APO=OA•n=7,即n=7,∴n=.又∵4m+3n=12,∴m=-2,这与m为正实数矛盾,∴△APO的面积不能达到7个平方单位.如图1,(2)设AP与y轴交于点E,过点E作EF⊥AB于点F,如图2所示.当x=0时,y=x+4=4,∴点B的坐标为(0,4),∴AB==1.∵AP平分∠BAO,∴EO=EF.∵S△ABE=BE•OA=AB•EF,S△AOE=EO•OA,∴,即,∴EO=,∴点E的坐标为(0,).设直线AP的解析式为y=kx+b(k≠0),将A(-3,0),E(0,)代入y=kx+b,得:,解得:,∴直线AP的解析式为y=x+.∵点P的坐标为(m,n),m,n满足4m+3n=12,∴点P在直线y=-x+4上.联立直线AP,BP的解析式成方程组,得:,解得:,∴m=,n=,∴1m+n=2.(3)“小薏发现”不对,理由如下:依照题意,画出图形,如图3所示.∵2∠CBO+∠PA′O=20°,∠OBA′+∠PA′O=20°,∴∠OBA′=2∠CBO.∵点A′与点A关于y轴对称,∴点A′的坐标为(3,0),点P在线段BA′上.当点C在x轴正半轴时,BC平分∠OBA′,同(2)可得出:,即,∴OC=,∴点C的坐标为(,0),∴AC=.∵S△ACB=AC•OB=××4=>7,∴不存在点P,使得△ACP的面积等于7个平方单位;当点C在x轴负半轴时,点C的坐标为(-,0),∴AC=.∵S△ACB=AC•OB=××4=<7,∴此种情况下,△ACP的面积不可能达到7个平方单位.综上所述:“小薏发现”不正确.【点睛】本题考查了一次函数图象上点的坐标特征、三角形的面积、待定系数法求一次函数解析式、三角形的面积、角平分线的性质以及角的计算,解题的关键是:(1)利用三角形的面积公式结合△APO的面积等于7个平方单位,求出n值;(2)联立两直线解析式成方程组,通过解方程组求出交点坐标;(3)分点C在x轴正半轴及点C在x轴负半轴两种情况,分析“小薏发现”是否正确.22、(1)详见解析;(2)1.【解析】
(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE==6,于是得到结论.【详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE==6,∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=1.【点睛】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.23、证明:(1)见解析(2)见解析【解析】
(1)根据AC⊥BC,BD⊥AD,得出△ABC与△BAD是直角三角形,再由AC=BD,AB=BA,根据HL得出△ABC≌△BAD,即可证出BC=AD.(2)根据△ABC≌△BAD,得出∠CAB=∠DBA,从而证出OA=OB,△OAB是等腰三角形.【详解】证明:(1)∵AC⊥BC,BD⊥AD,∴△ABC与△BAD是直角三角形,在△ABC和△BAD中,∵AC="BD",AB=BA,∠ACB=∠BDA=90°,∴△ABC≌△BAD(HL).∴BC=AD.(2)∵△ABC≌△BAD,∴∠CAB=∠DBA,∴OA=OB.∴△OAB是等腰三角形.24、(1)见解析;(2)当△ABC满足∠ACB=90°时,四边形AECF是正方形,见解析.【解析】
(1)求出∠ECF=90°=∠E=∠F,即可推出答案;
(2)∠ACB=90°,推出∠ACE=∠EAC=45°,AE=CE即可.【详解】(1)证明:∵CE、CF分别是△ABC的内、外角平分线,∴∠ACE=12∠ACB∴∠ACE+∠ACF=12(∠ACB+∠ACD)=∴∠E=∠F=90°,∴四边形AECF是矩形.(2)解:当△ABC满足∠ACB=90°时,四边形AECF是正方形.理由:∵∠ACE=∴∠EAC=∴∠ACE=∠EAC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年古色古香游合同
- 2025年作品著作权使用许可协议
- 2025年度木工工艺研发与推广分包合同4篇
- 二零二五版房屋装修设计、施工及监理合同2篇
- 2025年中国连锁经营行业市场深度调查评估及投资方向研究报告
- 二零二五版离婚协议书针对存款账户的专项管理协议3篇
- 2025年度私人借款与信用评估机构合作协议
- 2025年度二零二五年度车牌借用与保险理赔合作协议
- 2025年度航空行业竞业协议敬业精神承诺合同
- 二零二五年度网约车平台车主与驾驶员合作协议书
- 教师招聘(教育理论基础)考试题库(含答案)
- 2024年秋季学期学校办公室工作总结
- 铺大棚膜合同模板
- 长亭送别完整版本
- 智能养老院视频监控技术方案
- 你比我猜题库课件
- 无人驾驶航空器安全操作理论复习测试附答案
- 建筑工地春节留守人员安全技术交底
- 默纳克-NICE1000技术交流-V1.0
- 蝴蝶兰的简介
- 老年人心理健康量表(含评分)
评论
0/150
提交评论