山东省新泰市2022-2023学年数学八下期末质量检测模拟试题含解析_第1页
山东省新泰市2022-2023学年数学八下期末质量检测模拟试题含解析_第2页
山东省新泰市2022-2023学年数学八下期末质量检测模拟试题含解析_第3页
山东省新泰市2022-2023学年数学八下期末质量检测模拟试题含解析_第4页
山东省新泰市2022-2023学年数学八下期末质量检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列图形中,既是轴对称图图形又是中心对称图形的是()A. B. C. D.2.A、B两点在一次函数图象上的位置如图所示,两点的坐标分别是,,下列结论正确的是A. B. C. D.3.一次函数y=kx+b的图象经过第一、三、四象限,则()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<04.图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是()A.y=4n﹣4 B.y=4n C.y=4n+4 D.y=n25.下列函数解析式中不是一次函数的是()A. B. C. D.6.最早记载勾股定理的我国古代数学名著是()A.《九章算术》 B.《周髀算经》 C.《孙子算经》 D.《海岛算经》7.若顺次连结四边形各边中点所得的四边形是菱形,则原四边形()A.一定是矩形 B.一定是菱形 C.对角线一定互相垂直 D.对角线一定相等8.下列运算正确的是()A.=2 B.=±2 C. D.9.某经销商销售一批多功能手表,第一个月以200元/块的价格售出80块,第二个月起降价,以150元/块的价格将这批手表全部售出,销售总额超过了2.7万元,则这批手表至少有()A.152块 B.153块 C.154块 D.155块10.对于一组统计数据1,1,6,5,1.下列说法错误的是()A.众数是1 B.平均数是4 C.方差是1.6 D.中位数是6二、填空题(每小题3分,共24分)11.已知一次函数y=mx+n(m≠0)与x轴的交点为(3,0),则方程mx+n=0(m≠0)的解是x=________.12.若关于x的方程有增根,则k的值为_____.13.若3,4,a和5,b,13是两组勾股数,则a+b的值是________.14.小邢到单位附近的加油站加油,下图所示是他所用的加油机上的数据显示牌,则数据中的变量是______15.一个菱形的边长为5,一条对角线长为6,则这个菱形另一条对角线长为_____.16.如图,正方形ABCD是出四个全等的角三角形围成的,若,,则EF的长为________。17.小明五次测试成绩为:91、89、88、90、92,则五次测试成绩平均数为_____,方差为________.18.在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长备几何?”这个数学问题的意思是说:“有一个水池,水面是一个边长为丈(丈尺)的正方形,在水池正中央长有一根芦苇,芦苇露出水面尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各是多少?”设这个水池的深度是尺,根据题意,可列方程为__________.三、解答题(共66分)19.(10分)已知:在平行四边形ABCD中,AM=CN.求证:四边形MBND是平行四边形.20.(6分)在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.21.(6分)甲、乙两人加工一种零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用的时间相等.(1)求甲每小时加工多少个零件?(2)由于厂家在12小时内急需一批这种零件不少于1000件,决定由甲、乙两人共同完成.乙临时有事耽搁了一段时间,先让甲单独完成一部分零件后两人合作完成剩下的零件.求乙最多可以耽搁多长时间?22.(8分)某班“数学兴趣小组”对函数y=x−2|x|的图象和性质进行了探究,探究过程如下,请补充完整:(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:其中,m=___.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)探究函数图象发现:①函数图象与x轴有___个交点,所以对应的方程x−2|x|=0有___个实数根;②方程x−2|x|=−有___个实数根;③关于x的方程x−2|x|=a有4个实数根时,a的取值范围是___.23.(8分)如图,在中,,是的中点,是的中点,过点作交的延长线于点,连接.(1)写出四边形的形状,并证明:(2)若四边形的面积为12,,求.24.(8分)如图,经过点A(6,0)的直线y=kx﹣3与直线y=﹣x交于点B,点P从点O出发以每秒1个单位长度的速度向点A匀速运动.(1)求点B的坐标;(2)当△OPB是直角三角形时,求点P运动的时间;(3)当BP平分△OAB的面积时,直线BP与y轴交于点D,求线段BD的长.25.(10分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.26.(10分)如图,D是△ABC的边AB上一点,CE∥AB,DE交AC于点F,若FA=FC.(1)求证:四边形ADCE是平行四边形;(2)若AE⊥EC,EF=EC=1,求四边形ADCE的面积.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

结合轴对称图形和中心对称图形的定义求解观察各个图形,即可完成解答.【详解】A、不是轴对称图形,是中心对称图形,故A错误;B、是轴对称图形,但不是中心对称图形,故B错误;C、既不是轴对称图形,也不是中心对称图形,故C正确;D、既是轴对称图形又是中心对称图形,故D正确.故选D.【点睛】本题考查图形对称性的判断,中心对称图形满足绕着中心点旋转180°后能与自身重合,而若一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形就是轴对称图形.2、B【解析】

根据函数的图象可知:y随x的增大而增大,y+b<y,x+a<x得出b<0,a<0,即可推出答案.【详解】∵根据函数的图象可知:y随x的增大而增大,∴y+b<y,x+a<x,∴b<0,a<0,∴选项A.C.

D都不对,只有选项B正确,故选B.3、B【解析】

根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【详解】由一次函数y=kx+b的图象经过第一、三、四象限又由k>1时,直线必经过一、三象限,故知k>1再由图象过三、四象限,即直线与y轴负半轴相交,所以b<1.故选:B.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>1时,直线必经过一、三象限.k<1时,直线必经过二、四象限.b>1时,直线与y轴正半轴相交.b=1时,直线过原点;b<1时,直线与y轴负半轴相交.4、B【解析】

试题解析:由题图可知:n=1时,圆点有4个,即y=4×1=4;n=2时,圆点有8个,即y=4×2=8;n=3时,圆点有12个,即y=4×3=12;……∴y=4n.故选B.5、C【解析】

根据一次函数的定义,可得答案.【详解】A、是一次函数,故A正确;B、是一次函数,故B正确;C、是二次函数,故C错误;D、是一次函数,故D正确;故选:C.【点睛】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.6、B【解析】

由于《周髀算经》是我国最古老的一部天文学著作,不但记载了勾股定理,还详细的记载了有关“勾股定理”公式以及证明方法,所以是最早有记载的.【详解】最早记载勾股定理的我国古代数学名著是《周髀算经》,故选:B.【点睛】考查了数学核心素养的知识,了解最早记载勾股定理的我国古代数学名著是解题的依据.7、D【解析】

试题分析:菱形的四条边都相等,根据三角形中位线的性质可得原四边形的对角线一定相等.考点:菱形的性质【详解】因为菱形的各边相等,根据四边形的中位线的性质可得原四边形的对角线一定相等,故选D.8、A【解析】

根据,二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变进行计算即可.【详解】解:A、,故原题计算正确B、,故原题计算错误C、和不是同类二次根式,不能合并,故原题计算错误D、,故原题计算错误故选:A【点睛】本题考查了二次根式的化简,以及简单的加减运算,认真计算是解题的关键.9、C【解析】

根据题意设出未知数,列出相应的不等式,从而可以解答本题.【详解】解:设这批手表有x块,

解得,

这批手表至少有154块,

故选C.【点睛】本题考查一元一次不等式的应用,解题的关键是明确题意,列出相应的不等式.10、D【解析】

根据中位数、众数、方差等的概念计算即可得解.【详解】A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;B、由平均数公式求得这组数据的平均数为4,故此选项正确;C、S2=[(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此选项正确;D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;故选D.考点:1.众数;2.平均数;1.方差;4.中位数.二、填空题(每小题3分,共24分)11、1【解析】

直接根据函数图象与x轴的交点进行解答即可.【详解】∵一次函数y=mx+n与x轴的交点为(1,0),∴当mx+n=0时,x=1.故答案为:1.【点睛】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.12、1【解析】

方程两边都乘以(x+1)(x-1)化为整式方程,由增根的概念将x=1和x=-1分别代入求解可得.【详解】解:方程两边都乘以(x+1)(x﹣1),得:2(x﹣1)+k(x+1)=6,∵方程有增根,∴x=1或x=﹣1,当x=1时,2k=6,k=1;当x=﹣1时,﹣4=6,显然不成立;∴k=1,故答案为1.【点睛】本题主要考查分式方程的增根,把分式方程的增根代入整式方程是解题关键.13、1【解析】解:∵3,4,a和5,b,13是两组勾股数,∴a=5,b=12,∴a+b=1.故答案为:1.14、金额与数量【解析】

根据常量与变量的意义结合油的单价是不变的,而金额随着加油数量的变化在变化,据此即可得答案.【详解】常量是固定不变的量,变量是变化的量,单价是不变的量,而金额是随着数量的变化而变化,故答案为:金额与数量.【点睛】本题考查了常量与变量,熟练掌握常量与变量的概念是解题的关键.15、1【解析】

根据菱形对角线互相垂直平分可得AO=OC,BO=OD,△ABO为Rt△;在Rt△ABO中,已知AB,AO的长,即可求BO的长,根据BO的长即可求BD的长.【详解】如图,由题意知,AB=5,AC=6,∴AO=OC=3,∵菱形对角线互相垂直平分,∴△ABO为直角三角形,在Rt△ABO中,AB=5,AO=3,∴BO=AB2-A故BD=2BO=1,故答案为:1.【点睛】本题考查了菱形对角线互相垂直平分的性质,考查了勾股定理在直角三角形中的运用,本题中根据勾股定理求BO的值是解题的关键.16、【解析】

根据全等三角形的性质得到BH=AE=5,得到EH=BE-BH=7,根据勾股定理计算即可.【详解】,同理,HF=7,故答案为.【点睛】本题考查了全等三角形的性质和勾股定理,在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.也就是说,直角三角形两条直角边的平方和等于斜边的平方.17、901【解析】

解:平均数=,方差=故答案为:90;1.18、【解析】试题解析:设由题意可得:.故答案为.三、解答题(共66分)19、证明见解析.【解析】

可通过证明DM∥BN,DM=BN来说明四边形是平行四边形,也可通过DM=BN,BM=DN来说明四边形是平行四边形.【详解】(法一)∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB.∵AM=CN,∴AD﹣AM=CB﹣CN,即DM=BN.又∵DM∥BN,∴四边形MBND是平行四边形.(法二)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△AMN和△CND中,又∵,∴△AMN≌△CND,∴BM=DN.∵AM=CN,∴AD﹣AM=CB﹣CN,即DM=BN.又∵BM=DN,∴四边形MBND是平行四边形.点睛:本题考查了平行四边形的性质和判定,题目难度不大.20、(1)CH是从村庄C到河边的最近路,理由见解析;(2)原来的路线AC的长为2.5千米.【解析】

(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可【详解】(1)是,理由是:在△CHB中,∵CH2+BH2=(2.4)2+(1.8)2=9BC2=9∴CH2+BH2=BC2∴CH⊥AB,所以CH是从村庄C到河边的最近路(2)设AC=x在Rt△ACH中,由已知得AC=x,AH=x﹣1.8,CH=2.4由勾股定理得:AC2=AH2+CH2∴x2=(x﹣1.8)2+(2.4)2解这个方程,得x=2.5,答:原来的路线AC的长为2.5千米.【点睛】此题考查勾股定理及其逆定理的应用,熟练掌握基础知识是解题的关键.21、(1)甲每小时加工50个零件,则乙每小时加工40个零件;(2)2小时.【解析】

(1)主要利用甲加工150个零件所用的时间与乙加工120个零件所用的时间相等,建立等式关系,即可求解,(2)乙最多可以耽搁多长时间,这是一个不等式,把乙的完成的工作量+甲完成的工作量≥1000,【详解】解:(1)设甲每小时加工x个零件,则乙每小时加工(x﹣10)个零件,根据题意,得:=,解得:x=50,经检验x=50是分式方程的解,答:甲每小时加工50个零件,则乙每小时加工40个零件;(2)设乙耽搁的时间为x小时,根据题意,得:50x+(50+40)(12﹣x)≥1000,解得:x≤2,答:乙最多可以耽搁2小时.【点睛】本题主要考查分式方程和一元一次不等式的实际应用22、(1)0;(2)见解析;(3)①3、3;②4;③0<a<−1.【解析】

(1)根据当x=2或x=-2时函数值相等即可得;(2)将坐标系中y轴左侧的点按照从左到右的顺序用平滑的曲线依次连接可得;(3)①根据函数图象与x轴的交点个数与对应方程的解的个数间的关系可得;②由直线y=-与y=x-2|x|的图象有4个交点可得;③关于x的方程x-2|x|=a有4个实数根时,0<a<-1.【详解】(1)由函数解析式y=x−2|x|知,当x=2或x=−2时函数值相等,∴当x=−2时,m=0,故答案为:0;(2)如图所示:(3)①由图象可知,函数图象与x轴有3个交点,所以对应的方程x−2|x|=0有3个实数根;②由函数图象知,直线y=−与y=x−2|x|的图象有4个交点,所以方程x−2|x|=−有4个实数根;③由函数图象知,关于x的方程x−2|x|=a有4个实数根时,0<a<−1,故答案为:0<a<−1;故答案为:①3、3;②4;③0<a<−1.【点睛】此题考查二次函数的性质,抛物线与坐标轴的交点,解题关键在于结合函数图象进行解答.23、(1)详见解析;(2)【解析】

(1)由“AAS”可证△AEF≌△DEC,可得AF=CD,由直角三角形的性质可得AD=BD=CD,由菱形的判定是可证ADBF是菱形.

(2)由题意可得S△ABC=S四边形ADBF=12,可得AC的长,由勾股定理可求BC的长.【详解】解:解:(1)四边形ADBF是菱形,

理由如下:∵E是AD的中点,

∴AE=DE,

∵AF∥BC

∴∠AFE=∠DCE,且∠AEF=∠CED,AE=DE

∴△AEF≌△DEC(AAS)

∴AF=CD,

∵点D是BC的中点

∴BD=DC

∴AF=BD,且AF∥CD

∴四边形ADBF是平行四边形,

∵∠BAC=90°,D是BC的中点,

∴AD=BD,

∴平行四边形ADBF是菱形

(2)∵四边形ADBF的面积为12,

∴S△ABD=6

∵D是BC的中点

∴S△ABC=12=×AB×AC

∴12=×4×AC

∴AC=6,

∴BC=.【点睛】本题考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.24、(1)点B的坐标(2,-2);(2)当△OPB是直角三角形时,求点P运动的时间为2秒或4秒;(3)当BP平分△OAB的面积时,线段BD的长为2.【解析】

(1)根据点A的坐标,利用待定系数法可求出直线AB的解析式,联立直线AB及OB的解析式成方程组,通过解方程组可求出点B的坐标;

(2)由∠BOP=45°可得出∠OPB=90°或∠OBP=90°,①当∠OPB=90°时,△OPB为等腰直角三角形,根据等腰直角三角形的性质可得出OP的长,结合点P的运动速度可求出点P运动的时间;②当∠OBP=90°时,△OPB为等腰直角三角形,根据等腰直角三角形的性质可得出OP的长,结合点P的运动速度可求出点P运动的时间.综上,此问得解;

(3)由BP平分△OAB的面积可得出OP=AP,进而可得出点P的坐标,根据点B,P的坐标,利用待定系数法可求出直线BP的解析式,利用一次函数图象上点的坐标特征可求出点D的坐标,过点B作BE⊥y轴于点E,利用勾股定理即可求出BD的长.【详解】(1)直线y=kx﹣3过点A(1,0),所以,0=1k-3,解得:k=,直线AB为:-3,,解得:,所以,点B的坐标(2,-2)(2)∵∠BOP=45°,△OPB是直角三角形,

∴∠OPB=90°或∠OBP=90°,如图1所示:

①当∠OPB=90°时,△OPB为等腰直角三角形,

∴OP=BP=2,

又∵点P从点O出发以每秒1个单位长度的速度向点A匀速运动,

∴此时点P的运动时间为2秒;

②当∠OBP=90°时,△OPB为等腰直角三角形,

∴OP=2BP=4,

又∵点P从点O出发以每秒1个单位长度的速度向点A匀速运动,

∴此时点P的运动时间为4秒.

综上,当△OPB是直角三角形时,点P的运动时间为2秒或4秒.

(3)∵BP平分△OAB的面积,

∴S△OBP=S△ABP,

∴OP=AP,

∴点P的坐标为(3,0).

设直线BP的解析式为y=ax+b(a≠0),

将B(2,-2),点P(3,0)代入y=ax+b,得:,

解得:,

∴直线BP的解析式为y=2x-1.

当x=0时,y=2x-1=-1,

∴点D的坐标为(0,-1).

过点B作BE⊥y轴于点E,如图2所示.

∵点B的坐标为(2,-2),点D的坐标为(0,-1),

∴BE=2,CE=4,

∴BD==2,

∴当BP平分△OAB的面积时,线段BD的长为2.【点睛】本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论