弹性力学-第三章-应变状态分析_第1页
弹性力学-第三章-应变状态分析_第2页
弹性力学-第三章-应变状态分析_第3页
弹性力学-第三章-应变状态分析_第4页
弹性力学-第三章-应变状态分析_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1/1弹性力学-第三章-应变状态分析第三章应变状态分析知识点

位移与变形

正应变

纯变形位移与刚性转动位移

应变分量坐标转轴公式主应变齐次方程组

体积应变

变形协调方程

变形协调方程证明变形与应变分量

切应变

几何方程与应变张量

位移增量的分解

应变张量

应变状态特征方程

变形协调的物理意义

变形协调方程的数学意义多连域的变形协调

一、内容介绍

本章讨论弹性体的变形,物体的变形是通过应变分量确定的。因此,首先确定位移与应变分量的基本关系-几何方程。由于应变分量和刚体转动都是通过位移导数表达的,因此必须确定刚体转动位移与纯变形位移的关系,才能完全确定一点的变形。

对于一点的应变分量,在不同坐标系中是不同的。因此,应变状态分析主要是讨论不同坐标轴的应变分量变化关系。这个关系就是应变分量的转轴公式;根据转轴公式,可以确定一点的主应变和应变主轴等。当然,由于应变分量满足二阶张量变化规律,因此具体求解可以参考应力状态分析。

应该注意的问题是变形协调条件,就是位移的单值连续性质。假如位移函数不是基本未知量,由于弹性力学是从微分单元体入手讨论的,因此变形后的微分单元体也必须满足连续性条件。这在数学上,就是应变分量必须满足变形协调方程。在弹性体的位移边界,则必须满足位移边界条件。

二、重点

1、应变状态的定义:正应变与切应变;应变分量与应变张量;

2、几

何方程与刚体转动;3、应变状态分析和应变分量转轴公式;4、应变

状态特征方程和应变不变量;主应变与应变主轴;5、变形协调方程

与位移边界条件。

§3.1位移分量与应变分量几何方程

学习思路:

由于载荷的作用或者温度的变化,物体内各点在空间的位置将发生变化,就是产生位移。这一移动过程,弹性体将同时发生两种可能的变化:刚体位移和变形位移。变形位移是与弹性体的应力有着直接的关系。

弹性体的变形通过微分六面体单元描述,微分单元体的变形分为两个部分,一是微分单元体棱边的伸长和缩短;二是棱边之间夹角的变化,分别使用正应变和切应变表示这两种变形的。

由于是小变形问题,单元变形可以投影于坐标平面分析。根据正应变和切应变定义,不难得到应变与位移的关系-几何方程,或者称为柯西方程。

几何方程给出的应变通常称为工程应变。几何方程可以表示为张量形式,应该注意的是,正应变与对应应变张量分量相等;而切应变等于对应的应变张量分量的两倍。

几何方程给出了位移分量和应变分量之间的关系。

学习要点:

1、位移函数;

2、变形与应变分量;

3、正应变表达式;

4、切应

变分量;5、几何方程与应变张量。

1、位移函数

由于载荷作用或者温度变化等外界因素等影响,物体内各点在空间的位置将发生变化,即产生位移。这个移动过程,弹性体将可能同时发生两种位移变化。

第一种位移是位置的改变,但是物体内部各个点仍然保持初始状态的相对位置不变,这种位移是物体在空间做刚体运动引起的,因此称为刚体位移。

第二种位移是弹性体形状的变化,位移发生时不仅改变物体的绝对位置,而且改变了物体内部各个点的相对位置,这是物体形状变化引起的位移,称为变形。

一般来说,刚体位移和变形是同时出现的。当然,对于弹性力学,主要是研究变形,因为变形和弹性体的应力有着直接的关系。

根据连续性假设,弹性体在变形前和变形后仍保持为连续体。那么弹性体中某点在变形过程中由M(x,y,z)移动至M'(x',y',z'),这一过程也将是连

续的,如图所示。在数学上,x',y',z'必为x,y,z的单值连续函数。设MM'=S为位移矢量,其三个分量u,v,w为位移分量。则

u=x'(x,y,z)-x=u(x,y,z),

v=y'(x,y,z)-y=v(x,y,z)

w=z'(x,y,z)-z=w(x,y,z)

显然,位移分量u,v,w也是x,y,z的单值连续函数。以后的分析将进一步假定位移函数具有三阶连续导数。

2、变形与应变分量

为进一步研究弹性体的变形情况,假设从弹性体中分割出一个微分六面体单元,其六个面分别与三个坐标轴垂直。

对于微分单元体的变形,将分为两个部分讨论。一是微分单元体棱边的伸长和缩短;二是棱边之间夹角的变化。弹性力学分别使用正应变和切应变表示这两种变形的。

对于微分平行六面体单元,设其变形前与x,y,z坐标轴平行的棱边分别为MA,MB,MC,变形后分别变为M'A',M'B',M'C'。

假设分别用εx,εy,εz表示x,y,z轴方向棱边的相对伸长度,即正应变;分别用γxy,γyz,γzx表示x和y,y和z,z和x轴之间的夹角变化,即切应变。则

对于小变形问题,为了简化分析,将微分单元体分别投影到Oxy,Oyz,Ozx平面来讨论。

显然,单元体变形前各棱边是与坐标面平行的,变形后棱边将有相应的转动,但我们讨论的是小变形问题,这种转动所带来的影响较小。特别是物体位移中不影响变形的计算,假设各点的位移仅为自身的大小和形状的变化所确定,则这种微分线段的转动的误差是十分微小的,不会导致微分单元体的变形有明显的变化。

3、正应变表达式

首先讨论Oxy面上投影的变形。

设ma,mb分别为MA,MB的投影,m'a',m'b'分别为M'A',M'B',即变形后的MA,MB的投影。

微分单元体的棱边长为dx,dy,dz,M点的坐标为(x,y,z),u(x,y,z),v(x,y,z)分别表示M点x,y方向的位移分量。

则A点的位移为u(x+dx,y,z),v(x+dx,y,z),B点的位移为u(x,y+dy,z),v(x,y+dy,z)。按泰勒级数将A,B两点的位移展开,并且略去二阶以上的小量,则A,B点的位移分别为

因为

所以

同理可得

由此可以得到弹性体内任意一点微分线段的相对伸长度,即正应变。

显然微分线段伸长,则正应变εx,εy,εz大于零,反之则小于零。

4、切应变分量

以下讨论切应变表达关系。

假设βyx为与x轴平行的微分线段ma向y轴转过的角度,βxy为与y轴平行的mb向x轴转过的角度。则切应变

因为

上式的推导中,利用了小变形条件下位移的导数是高阶小量的结论。同理可得

βyx和βxy可为正或为负,其正负号的几何意义为:βyx大于零,表示位移v随坐标x而增加,即x方向的微分线段正向向y轴旋转。将上述两式代入切应变表达式,则

同理可得

切应变分量大于零,表示微分线段的夹角缩小,反之则增大。

5、几何方程与应变张量

综上所述,应变分量与位移分量之间的关系为

上述公式称为几何方程,又称柯西方程。

柯西方程给出了位移分量和应变分量之间的关系。如果已知位移,由位移函数的偏导数即可求得应变;但是如果已知应变,由于六个应变分量对应三个位移分量,则其求解将相对复杂。这个问题以后作专门讨论。

几何方程给出的应变通常称为工程应变。

如果使用张量符号,则几何方程可以表达为

上式表明应变分量εij将满足二阶张量的坐标变换关系,应变张量分量与工程应变分量的关系可表示为

§3.2纯变形位移与刚性转动位移

学习思路:

应变分量通过位移的偏导数描述了一点的变形,对微分平行六面体单元棱边的伸长以及棱边之间夹角的改变做出定义。但是这还不能完全描述弹性体的变形,原因是没有考虑微分单元体的刚体转动。

通过分析弹性体内无限邻近两点的位置变化,则可得出刚体的转动位移与纯变形位移之间的关系。刚体转动通过转动分量描述。

刚性转动位移的物理意义:如果弹性体内某点没有变形,则无限邻近它的任意一点的位移由两部分组成,平动位移和转动位移。如果发生变形,位移中还包括纯变形位移。

学习要点:

1、刚体转动位移;

2、转动位移分量;

3、纯变形位移与转动位移;

4、位移的分解。

1、刚体转动位移

应变可以描述一点的变形,即对微分平行六面体单元棱边的伸长以及棱边之间夹角的改变做出定义。但是这还不足以完全描述弹性体的变形,原因是应变分析仅仅讨论了棱边伸长和夹角变化,而没有考虑微分单元体位置的改变,即单元体的刚体转动。

通过分析弹性体内无限邻近两点的位置变化,则可得出刚体的转动位移与纯变形位移之间的关系。

设P点无限邻近O点,P点及其附近区域绕O作刚性转动,转过微小角度。

设转动矢量为ω,OP之间的距离矢量为,如图所示。

引入拉普拉斯算符矢量

2、转动位移分量

设P点的位移矢量为U,有

U=ui+uj+uk

由于位移矢量可以表示为U=ω×ρ,

所以

其中

ωx,ωy,ωz为转动分量,是坐标的函数,表示了弹性体内微分单元体的刚性转动。

3、纯变形位移与转动位移

设M点的坐标为(x,y,z),位移(u,v,w)。与M点邻近的N点,坐标为(x+dx,y+dy,z+dz),位移为(u+du,v+dv,w+dw)。

则MN两点的相对位移为(du,dv,dw)。因为位移为坐标的函数,所以

同理可得

以上位移增量公式中,前三项为产生变形的纯变形位移,后两项是某点邻近区域的材料绕该点像刚体一样转动的刚性转动位移。

刚性转动位移的物理意义为,如果弹性体中某点及邻近区域没有变形,则与某点无限邻近这一点的位移,根据刚体动力学可知,是由两部分组成。分别是随这点的平动位移和绕这点的转动位移。对于弹性体中某一点,一般还要发生变形,因此位移中还包括纯变形位移。

4、位移的分解

总得来讲,与M点无限邻近的N点的位移由三部分组成的:

1、随同M点作平动位移。

2、绕M点作刚性转动在N点产生的位移。

3、由于M点及其邻近区域的变形在N点引起的位移。

转动分量ωx,ωy,ωz对于微分单元体,描述的是刚性转动,但其对于整个弹性体来讲,仍属于变形的一部分。三个转动分量和六个应变分量合在一起,不仅确定了微分单元体形状的变化,而且确定了方位的变化。

位移增量公式如果使用矩阵形式表示,可得

显然,位移的增量是由两部分组成的,一部分是转动分量引起的刚体转动位移,另一部分是应变分量引起的变形位移增量。

§3.3应变的坐标变换与应变张量

学习思路:

与应力状态分析相同,一点的应变分量在不同坐标系下的描述是不相同的,因此讨论应变状态,就必须建立坐标变换,就是坐标转动时的应变分量变换关系。

本节通过新坐标系与旧坐标系之间的位移变换关系式,根据几何方程,通过复合函数的微分,就可以得到应变分量的转轴公式。

转轴公式表明应变张量也是二阶对称张量。

根据转轴公式,一点的六个独立的应变分量一旦确定,则任意坐标系下的应变分量均可确定,即应变状态完全确定。

应变状态分析表明:坐标变换后各个应变分量均发生改变,但是作为一个整体,一点的应变

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论