版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版高二数学教案
高二班级有两大特点:一、教学进度快。一年要完成二年的课程。
二、高一的新奇过了,距离高考尚远,最简单玩的疯、走的远的时候。
一起看看人教版高二数学教案!欢迎查阅!
人教版高二数学教案1
一、教材分析
【教材地位及作用】
基本不等式又称为均值不等式,选自北京师范高校出版社一般高
中课程标准试验教科书数学必修5第3章第3节内容。教学对象为高
二同学,本节课为第一课时,重在讨论基本不等式的证明及几何意义。
本节课是在系统的学习了不等关系和把握了不等式性质的基础上绽
开的,作为重要的基本不等式之一,为后续进一步了解不等式的性质
及运用,讨论最值问题奠定基础。因此基本不等式在学问体系中起了
承上启下的作用,同时在生活及生产实际中有着广泛的应用,它也是
对同学进行情感价值观教育的好素材,所以基本不等式应重点讨论。
【教学目标】
依据《新课程标准》对《不等式》学段的目标要求和同学的实际
状况,特确定如下目标:
学问与技能目标:理解把握基本不等式,理解算数平均数与几何
平均数的概念,学会构造条件使用基本不等式;
过程与方法目标:通过探究基本不等式,使同学体会学问的形成
1
过程,培育分析、解决问题的力量;
情感与态度目标:通过问题情境的设置,使同学熟悉到数学是从
实际中来,培育同学用数学的眼光看世界,通过数学思维认知世界,
从而培育同学擅长思索、勤于动手的良好品质。
【教学重难点】
重点:理解把握基本不等式,能借助几何图形说明基本不等式的
意义。
难点:利用基本不等式推导不等式.
关键是对基本不等式的理解把握.
二、教法分析
本节课采纳观看感知抽象归纳探究;启发诱导、
讲练结合的教学方法,以同学为主体,以基本不等式为主线,从实际
问题动身,放手让同学探究思考。利用多媒体帮助教学,直观地反映
了教学内容,使同学思维活动得以充分绽开,从而优化了教学过程,
大大提高了课堂教学效率.
三、学法指导
新课改的精神在于以同学的进展为本,把学习的主动权还给同学,
提倡乐观主动,勇于探究的学习方法,因此,本课主要实行以自主探
究与合作沟通的学习方式,通过让同学想一想,做一做,用一用,建
构起自己的学问,使同学成为学习的仆人。
四、教学过程
教学过程设计以问题为中心,以探究解决问题的方法为主线绽开。
2
这种支配强调过程,符合同学的认知规律,使数学教学过程成为同学
对学问的再制造、再发觉的过程,从而培育同学的创新意识。
详细过程支配如下:
(一)基本不等式的教学设计创设情景,提出问题
设计意图:数学教育必需基于同学的“数学现实〃,现实情境问题
是数学教学的平台,数学老师的任务之一就是关心同学构造数学现实,
并在此基础上进展他们的数学现实.基于此,设置如下情境:
上图是在北京召开的第24届国际数学家大会的会标,会标是依
据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个
风车,代表中国人民热忱好客。
[问题1]请观看会标图形,图中有哪些特别的几何图形?它们在面
积上有哪些相等关系和不等关系?(让同学分组争论)
(二)探究问题,抽象归纳
基本不等式的教学设计1.探究图形中的不等关系
形的角度--(利用多媒体展现会标图形的变化,引导同学发觉四
个直角三角形的面积之和小于或等于正方形的面积.)
数的角度
[问题2]若设直角三角形的两直角边分别为a、b,应怎样表示这种
不等关系?
同学争论结果:。
[问题3]大家看,这个图形里还真有点奥妙。我们从图中找到了
一个不等式。这里a、b的取值有没有什么限制条件?不等式中的等号
3
什么时候成立呢?(师生共同探究)
咱们再看一看图形的变化,(老师演示)
(同学发觉)当a=b四个直角三角形都变成了等腰直角三角形,他
们的面积和恰好等于正方形的面积,即.探究结论:我们得到不等式,
当且仅当时等号成立。
设计意图:本背景意图在于利用图中相关面积间存在的数量关系,
抽象出不等式基本不等式的教学设计。在此基础上,引导同学熟悉基
本不等式。
2.抽象归纳:
一般地,对于任意实数a,b,有,当且仅当a=b时一,等号成立。
[问题4]你能给出它的证明吗?
同学在黑板上板书。
[问题5]特殊地,当时,在不等式中,以、分别代替a、b,得到
什么?
同学归纳得出。
设计意图:类比是学习数学的一种重要方法,此环节不仅让同学
理解了基本不等式的来源,突破了重点和难点,而且感受了其中的函
数思想,为今后学习奠定基础.
【归纳总结】
假如a,b都是非负数,那么,当且仅当a=b时,等号成立。
我们称此不等式为基本不等式。其中称为a,b的算术平均数,称
为a,b的几何平均数。
4
3.探究基本不等式证明方法:
[问题6]如何证明基本不等式?
设计意图:在于引领同学从感性熟悉基本不等式到理性证明,实
现从感性熟悉到理性熟悉的升华,前面是从几何图形中的面积关系获
得不等式的,下面用代数的思想,利用不等式的性质直接推导这个不
等式。
方法一:作差比较或由基本不等式的教学设计绽开证明。
方法二:分析法
要证
只要证2
要证,只要证2
要证,只要证
明显,是成立的。当且仅当a=b时,中的等号成立。
4.理解升华
1)文字语言叙述:
两个正数的算术平均数不小于它们的几何平均数。
2)符号语言叙述:
若,则有,当且仅当a=b时,。
[问题刀怎样理解“当且仅当”?(同学小组争论,沟通看法,师生总
结)
“当且仅当a=b时-,等号成立”的含义是:
当a=b时,取等号,即;
5
仅当a=b时-,取等号,即。
3)探究基本不等式的几何意义:
基本不等式的教学设计借助学校阶段同学熟知的几何图形,引导
同学探究不等式的几何解释,通过数形结合,给予不等式几何直观。
进一步领悟不等式中等号成立的条件。
如图:AB是圆的直径,点C是AB上一点,
CD0AB,AC=a,CB=b,
[问题8]你能利用这个图形得出基本不等式的几何解释吗?
(老师演示,同学直观感觉)
易证RtACDRtDCB,那么CD2=CACB
即CD=.
这个圆的半径为,明显,它大于或等于CD,即,其中当且仅当
点C与圆心重合,即a=b时,,等号成立.
因此:基本不等式几何意义可认为是:在同一半圆中,半径不小
于半弦(直径是最长的弦);或者认为是,直角三角形斜边的一半不小于
斜边上的高.
4)联想数列的学问理解基本不等式
从形的角度来看,基本不等式具有特定的几何意义;从数的角度
来看,基本不等式揭示了"和”与"积〃这两种结构间的不等关系.
[问题9]回忆一下你所学的学问中,有哪些地方消失过“和"与"积"
的结构?
归纳得出:
6
均值不等式的代数解释为:两个正数的等差中项不小它们的等比
中项.
基本不等式的教学设计(四)体会新知,迁移应用
例1:(1)设均为正数,证明不等式:基本不等式的教学设计
(2)如图:AB是圆的直径,点C是AB上一点,设AC=a,CB=b,
,过作交于,你能利用这个图形得出这个不等式的一种几何解释
吗?
设计意图:以上例题是依据基本不等式的使用条件中的难点和关
键处设置的,目的是利用同学原有的平面几何学问,进一步领悟到不
等式成立的条件,及当且仅当时,等号成立。这里完全放手让同学自
主探究,老师指导,师生归纳总结。
(五)演练反馈,巩固深化
公式应用之一:
1.试推断与与2的大小关系?
问题:假如将条件"xO"去掉,上述结论是否仍旧成立?
2.试推断与7的大小关系?
公式应用之二:
设计意图:新奇好玩、简洁易懂、贴近生活的问题,不仅极大地
增加同学的爱好,拓宽同学的视野,更重要的是调动同学探究钻研的
爱好,引导同学加强对生活的关注,让同学体会:数学就在我们身边
的生活中
⑴用一个两臂长短有差异的天平称一样物品,有人说只要左右各
7
秤一次,将两次所称重量相加后除以2就可以了.你觉得这种做法比
实际重量轻了还是重了?
⑵甲、乙两商场对单价相同的同类产品进行促销.甲商场实行的
促销方式是在原价p折的基础上再打q折;乙商场的促销方式则是两
次都打折.对顾客而言,哪种打折方式更合算?(0
叼)
(五)反思总结,整合新知:
通过本节课的学习你有什么收获?取得了哪些阅历教训I?还有哪
些问题需要请教?
设计意图:通过反思、归纳,培育概括力量;关心同学总结阅历
教训,巩固学问技能,提高认知水平.从各种角度对均值不等式进行
总结,目的是为了让同学把握本节课的重点,突破难点
老师依据状况完善如下:
学问要点:
⑴重要不等式和基本不等式的条件及结构特征
⑵基本不等式在几何、代数及实际应用三方面的意义
思想方法技巧:
(1)数形结合思想、“整体与局部〃
(2)归纳与类比思想
⑶换元法、比较法、分析法
(七)布置作业,更上一层
1.阅读作业:预习基本不等式的教学设计
8
2.书面作业:已知a,b为正数,证明不等式基本不等式的教学设
计
3.思索题:类比基本不等式,当a,b,c均为正数,猜想会有怎样的
不等式?
设计意图:作业分为三种形式,体现作业的巩固性和进展性原则,
同时考虑同学的差异性。阅读作业是后续课堂的铺垫,而思索题不做
统一要求,供学有余力的同学课后讨论。
五、评价分析
1.在建立新知的过程中,老师力求引导、启发,让同学逐步应用
所学的学问来分析问题、解决问题,以形成比较系统和完整的学问结
构。每个问题在设计时,充分考虑了同学的详细状况,力争提问精确
到位,便于同学思索和回答。使思索和提问持续在同学的最近进展区
内,同学的思索有价值,对学问的理解和把握在不断的思索和争论中
完善和加深。
2.本节的教学中要求同学对基本不等式在数与形两个方面都有
比较充分的熟悉,特殊强调数与形的统一,教学过程从形得到数,又
从数回到形,意图使同学在比较中对基本不等式得以深刻理解。"数
形结合”作为一种重要的数学思想方法,不是老师提一提同学就能够
把握并且会用的,只有同学通过实践,意识到它的好处之后,同学才
会在解决问题时去尝试使用,只有通过不断的使用才能促进同学对这
种思想方法的再理解,从而达到把握它的目的。
六、板书设计
9
§3.3基本不等式
一、重要不等式
二、基本不等式
L文字语言叙述
2.符号语言叙述
3.几何意义
4.代数解释
三、应用举例
例1.
四、演练反馈
五、总结归纳
1.学问要点
2.思想方法
人教版高二数学教案2
学习目标:
1、了解本章的学习的内容以及学习思想方法2、能叙述随机变
量的定义
3、能说出随机变量与函数的关系,4、能够把一个随机试验结果
用随机变量表示
重点:能够把一个随机试验结果用随机变量表示
难点:随机大事概念的透彻理解及对随机变量引入目的的熟悉:
环节一:随机变量的定义
10
1.通过生活中的一些随机现象,能够概括出随机变量的定义
2能叙述随机变量的定义
3能说出随机变量与函数的区分与联系
一、阅读课本33页问题提出和分析理解,回答下列问题?
1、了解一个随机现象的规律详细指的是什么?
2、分析理解中的两个随机现象的随机试验结果有什么不同?建立
了什么样的对应关系?
总结:
3、随机变量
⑴定义:
这种对应称为一个随机变量。即随机变量是从随机试验每一个可
能的结果所组成的
到的映射。
(2)表示:随机变量常用大写字母.等表示.
(3)随机变量与函数的区分与联系
函数随机变量
自变量
因变量
因变量的范围
相同点都是映射都是映射
环节二随机变量的应用
1、能正确写出随机现象全部可能消失的结果2、能用随机变量
11
的描述随机大事
例1:已知在10件产品中有2件不合格品。现从这10件产品中
任取3件,其中含有的次品数为随机变量的学案.这是一个随机现象。
⑴写成该随机现象全部可能消失的结果;⑵试用随机变量来描述上述
结果。
变式:已知在10件产品中有2件不合格品。从这10件产品中任
取3件,这是一个随机现象。若Y表示取出的3件产品中的合格品数,
试用随机变量描述上述结果
例2连续投掷一枚匀称的硬币两次,用X表示这两次正面朝上的
次数,则X是一个随机变
量,分别说明下列集合所代表的随机大事:
(1){X=O}(2){X=1}
(3){X2}(4){X0}
变式:连续投掷一枚匀称的硬币三次,用X表示这三次正面朝上
的次数,则X是一个随机变量,X的可能取值是?并说明这些值所表
示的随机试验的结果.
练习:写出下列随机变量可能取的值,并说明随机变量所取的值
表示的随机变量的结果。
⑴从学校回家要经过5个红绿灯路口,可能遇到红灯的次数;
(2)一个袋中装有5只同样大小的球,编号为1,2,3,4,5,现
从中随机取出3只球,被取出的球的号码数;
小结(对标)
12
人教版高二数学教案3
学习目标:
1、了解本章的学习的内容以及学习思想方法2、能叙述随机变
量的定义
3、能说出随机变量与函数的关系,4、能够把一个随机试验结果
用随机变量表示
重点:能够把一个随机试验结果用随机变量表示
难点:随机大事概念的透彻理解及对随机变量引入目的的熟悉:
环节一:随机变量的定义
1.通过生活中的一些随机现象,能够概括出随机变量的定义
2能叙述随机变量的定义
3能说出随机变量与函数的区分与联系
一、阅读课本33页问题提出和分析理解,回答下列问题?
1、了解一个随机现象的规律详细指的是什么?
2、分析理解中的两个随机现象的随机试验结果有什么不同?建立
了什么样的对应关系?
总结:
3、随机变量
⑴定义:
这种对应称为一个随机变量。即随机变量是从随机试验每一个可
能的结果所组成的
到的映射。
13
(2)表示:随机变量常用大写字母.等表示.
(3)随机变量与函数的区分与联系
函数随机变量
自变量
因变量
因变量的范围
相同点都是映射都是映射
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年人教版(2024)九年级历史上册月考试卷含答案
- 2025年湘教版高三历史下册阶段测试试卷含答案
- 2025年湘教版选修3历史上册阶段测试试卷含答案
- 2025年浙教新版八年级地理上册阶段测试试卷含答案
- 2025年苏科新版选择性必修3生物下册阶段测试试卷
- 2025年统编版2024高一数学下册月考试卷
- 2025年华东师大版九年级地理下册月考试卷含答案
- 2025年浙教新版七年级生物下册阶段测试试卷含答案
- 2025年湘教新版选择性必修3语文下册阶段测试试卷
- 2025年湘师大新版九年级历史下册月考试卷
- 中央2025年国务院发展研究中心有关直属事业单位招聘19人笔试历年参考题库附带答案详解
- 2024年09月北京中信银行北京分行社会招考(917)笔试历年参考题库附带答案详解
- 外呼合作协议
- 小学二年级100以内进退位加减法800道题
- 保险公司2025年工作总结与2025年工作计划
- 2024年公司领导在新年动员会上的讲话样本(3篇)
- 眼科护理进修专题汇报
- 介入手术室感染控制管理
- GB/T 33629-2024风能发电系统雷电防护
- GB/T 19885-2005声学隔声间的隔声性能测定实验室和现场测量
- 高标准基本农田建设规范培训课件
评论
0/150
提交评论