




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
22211222112学年湖北武汉市九级(上)中数学试卷一、选题(共10小题,小题分,满分30分)1分)若关于的方程(a﹣1)+2x﹣1=0是一元二次方程,则a的取值范围是()A.a≠1.a>1.a<1Da≠02分)一元二次方程﹣2x﹣3=0的根的情况是()A.无实根.有两相等实根
.有两不等实根
D.无法判断3分)下列图形既是轴对称图形,又是中心对称图形的是()A.等边三角形.平行四边形C.正五边形
D.正方形4分)已知方程+4x﹣3=0两根分别是x和x,则x的值等于()A.﹣3B.﹣
.3D5)如图,ABC△ADE,D落在BC上,且B=60°,则EDC的度数等于()A.45°B..60°D75°6分)如图,在O中,半径OC⊥弦AB于P,且P为OC的中点,则∠BAC的度数是()A.45°B..25°D30°7分)如图,图案均是用长度相等的小木棒,按一定规律拼撘而成,第一个第1页(共19页)
22222222图案需4根小木棒,则第6个图案小木棒根数是()A.42B..54D568分)某树主干长出若干数目的支干,每个支干又长出同样数目小分支,主干、支干和小分支总数是.若设主干长出x个支干,则可列方程是()Ax)=57.1+x+=57C+x)x=57D1+x+2x=579分)将抛物y=2x﹣1,先向上平移2个单位,再向右平移个单位后其顶点坐标是()A1),2﹣1)D,1)10分)如图,MON=20°,B分别为射线OM、ON上两定点,OB=4,点、分别为射线OM、两动点,当P、运动时,线段AQ+PQ+PB的最小值是()A.3B..2D2二、填题(共6小题,每小3分,满分18分)11分方程3x﹣﹣1=0的二次项系数是一次项系数是,常数项是.12分)点A(﹣1,关于原点对称点B的坐标是.13分)小明设计了一个魔术盒,当任意实数对(,b进入其中,会得到一个新的实数a
2
﹣2b+若将实x2x放入其中得到﹣则x=
.14分)如图,⊙O的直径AB为13cm,弦AC为∠的平分线交⊙O于D则CD长是
cm.第2页(共19页)
222215分)抛物y=ax+bc的部分图象如图所示,则y<时x的取值范围是..16分)如图,等边△和等边△ADE中,AB=2当∠AEC=150°时则BE=
,AD=2
,连CE,,三、解题(共6小题,满分分)17分)按要求解下列方程:+x﹣3=0(式法)18分)已知抛物线的顶点为(,﹣4过点(﹣25(1)求抛物线解析式;(2)求函数值y>0时,自变量x的取值范围.19分)如图AB为⊙O的直径CD⊥AB于E⊥AB于F,求证.20分)如图,在边长为的小正方形组成的方格纸上将△绕点顺时针旋转90°第3页(共19页)
111111222222111111222222(1)画出旋转后的△AB′C;(2)以点为坐标原点,线段BC、AC所在直线分别为轴y轴建立直角坐标系,请直接写出点B′的坐标;(3)写出△ABC在旋转过程中覆盖的面积.21分)如图,要设计一副宽20cm、长30cm的图案,其中有两横两竖的彩条,横、竖彩条的宽度比为3,如果要使彩条所占面积是图案面积的如何设计彩条的宽度?
,应22分2015年十一黄金周商场大促销某店主计划从厂家采购高级羽绒服和时尚皮衣两种产品共20件,高级羽绒服的采购单价y(元/)与采购数量x(件)满足y=﹣20x+1500(<x≤20,为整数尚皮衣的采购单价y(元/)与采购数量x(件)满足y=﹣10x+1300(x≤20x为整数(1)经店主与厂家协商,采购高级羽绒服的数量不少于时尚皮衣数量,且高级羽绒服采购单价不低于1240元,问该店主共有几种进货方案?(2)该店主分别以元/件和元/的销售出高级羽绒服和时尚皮衣,且全部售完,则在()问的条件下,采购高级羽绒服多少件时总利润最大?并求最大利润.第4页(共19页)
222211222211212年北武市年()期中学卷参考答案与试题解析一、选题(共10小题,小题分,满分30分)1分)若关于的方程(a﹣1)+2x﹣1=0是一元二次方程,则a的取值范围是()A.a≠1.a>1.a<1Da≠0【解答】解:由题意得:a﹣1≠0解得:a≠1故选:A.2分)一元二次方程﹣2x﹣3=0的根的情况是()A.无实根.有两相等实根
.有两不等实根
D.无法判断【解答】解:∵△=﹣2)﹣×1(﹣3)>∴方程有两个不相等的实数根.故选:.3分)下列图形既是轴对称图形,又是中心对称图形的是()A.等边三角形.平行四边形C.正五边形
D.正方形【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心称图形.故错误;、是轴对称图形,不是中心对称图形.故错误;D是轴对称图形,也是中心对称图形.故正确.故选:D4分)已知方程+4x﹣3=0两根分别是x和x,则x的值等于()A.﹣3B.﹣
.3D【解答】解:∵方程2x
2
+4x﹣3=0两根分别是x和x,第5页(共19页)
1212∴xx=﹣,故选:B.5)如图,ABC△ADE,D落在BC上,且B=60°,则EDC的度数等于()A.45°B..60°D75°【解答】解:∵△ABC△ADE,∴∠B=∠ADE=60°,AB=AD,∴∠ADB=B=60°,∴∠EDC=60°.故选:.6分)如图,在O中,半径OC⊥弦AB于P,且P为OC的中点,则∠BAC的度数是()A.45°B..25°D30°【解答】解:连接OB∵OC⊥,P为的中点,∴OP=,∴∠OBP=30°,∴∠BOP=90°﹣第6页(共19页)
2222222222∴∠BAC=∠BOP=30°.故选:D7分)如图,图案均是用长度相等的小木棒,按一定规律拼撘而成,第一个图案需4根小木棒,则第6个图案小木棒根数是()A.42B..54D56【解答】解:拼搭第1个图案需4=1(1+3)根小木棒,拼搭第2个图案需10=2×(2+根小木棒,拼搭第3个图案需18=3×(3+根小木棒,拼搭第4个图案需28=4×(4+根小木棒,…拼搭第n个图案需小木棒n(n+=n+3n根.当n=6时,n
+3n=6
2
+3×.故选:.8分)某树主干长出若干数目的支干,每个支干又长出同样数目小分支,主干、支干和小分支总数是.若设主干长出x个支干,则可列方程是()Ax)
2
=57B.x+
=57C)x=57D1+x+2x=57【解答】解:∵主干为,每个支干长出个小分支,每个支干又长出同样数目的小分支,∴小分支的个数为x×x=x,∴可列方程为1+x+x
=57.第7页(共19页)
2222故选:B.9分)将抛物y=2x
2
﹣1,先向上平2个单位,再向右平1个单位后其顶点坐标是()A1),2﹣1)D,1)【解答】解:将抛物线﹣1向上平移2个单位再向右平移个单位后所得抛物线解析式为y=2x﹣+1所以平移后的抛物线的顶点为(1,故选:D10分)如图,MON=20°,B分别为射线OM、ON上两定点,OB=4,点、分别为射线OM、两动点,当P、运动时,线段AQ+PQ+PB的最小值是()A.3B..2D2【解答】解:作A关于ON的对称点A′,点B关于OM的对称点B′连接A′B,交于OM,ON分别为,Q,连接OA,OB′,则PB′=PB,′QOA,OB′=OB=4,MOB′=∠NOA′=∠,∴AQ+PQ+PB=A′Q+PQ+PB′=A′B,∠A′OB′=60°,∵cos60°=,∴∠OA′B′=90°,
=,∴A′B′==2
,∴线段AQ+PQ+PB的最小值是:故选:D
.第8页(共19页)
2222221222222212.二、填题(共6小题,每小3分,满分18分)11分)方程﹣﹣1=0的二次项系数是3常数项是﹣1
,一次项系数是﹣2
,【解答】解:方程3x﹣2x﹣1=0的二次项系数是,一次项系数是﹣2,常数项是﹣1,故答案为:3;﹣2;﹣12分)点A(﹣1,关于原点对称点B的坐标是(1,﹣2).【解答】解:点A(﹣,2)关于原点对称点B的坐标是(1﹣2故答案为﹣213分)小明设计了一个魔术盒,当任意实数对(,b进入其中,会得到一个新的实数a﹣2b+3若将实x2x放入其中得到﹣则x=﹣2
.【解答】解:根据题意得x
﹣2(﹣2x)+3=﹣1,整理得x+4x+4=0,(x+=0所以x=x=2.故答案为﹣2.14分)如图,⊙O的直径AB为13cm,弦AC为∠的平分线交⊙O于D则CD长是
cm.第9页(共19页)
【解答解DFCA垂足F在CA的延长线上作CB于点G连接DA,DB.∵CD平分∠ACB,∴∠ACD=∠∴DF=DG,
,∴.∵∠AFD=∠BGD=90°,在Rt△ADF和Rt△BDG,,∴Rt△AFD≌Rt△(∴AF=BG.同理:Rt△CDFRtCDG(HL∴.∵AB是直径,∴∠ACB=90°,∵,AB=13cm∴BC==12(cm∴5+AF=12﹣AF∴AF=,∴CF=
,∵CD平分∠ACB,∴∠ACD=45°,∵△CDF是等腰直角三角形,第10页(共19页)
22∴CD=故答案为:
(cm.15分)抛物y=ax+bc的部分图象如图所示,则y<时x的取值范围是x<﹣或x>3
.【解答】解:∵抛物线与x轴的一个交点坐标是(﹣,称轴是直线x=1∴抛物线与x轴另一交点的坐标是(,0∴当y<时,<﹣1或x>故答案为:x<﹣或x>3..16分)如图,等边△和等边△ADE中,AB=2当∠AEC=150°时则BE=4
,AD=2
,连CE,,【解答】解:如作CMAE于M设CM=a∵△ABC、△ADE都是等边三角形,∴AC=AB=2
,AE=AD=DE=2
,∠CAB=EAD=∠EDA=60°,∴∠CAE=∠,第11页(共19页)
222222222222在△CAE和△BAD中,,∴△CAE≌△BAD,∴EC=BD,∴∠∠,∴∠EDB=90°,∵∠AEC=150°,∴∠CEM=180°﹣∠AEC=30°,∴EM=a,在eq\o\ac(△,RT)ACM中,∵AC=CM+AM,∴28=a+(2
+
a)
2a=1(或﹣舍弃∴EC=BD=2CM=2在eq\o\ac(△,RT)EBD中,∵DE=2
,BD=2∴EB=故答案为4.
=
=4.三、解题(共6小题,满分分)17分)按要求解下列方程:+x﹣3=0(式法)【解答】解:∵a=1,,c=﹣3,∴eq\o\ac(△,)﹣4ac=1﹣4××(﹣3=13>第12页(共19页)
122222212122222212x=∴x=
=,x=
,.18分)已知抛物线的顶点为(,﹣4过点(﹣25(1)求抛物线解析式;(2)求函数值y>0时,自变量x的取值范围.【解答】解设抛物线解析式为y=a(x﹣1﹣把(﹣2,5)代入得a(﹣1﹣4=5,解得,所以抛物线解析式为y=(x﹣1)﹣,即y=x﹣2x﹣3(2)当时,x﹣2x﹣,解得x=﹣1,=3则抛物线与x轴的两交点坐标为(﹣1,0而抛物线的开口向上,所以当x<﹣或x>3时,y>19分)如图AB为⊙O的直径CD⊥AB于E⊥AB于F,求证.【解答】证明:∵CDAB,⊥,∴∠∠OFA=90°,AD=2AF,CD=2CE,在△OCE和△OAF中,,∴△≌△(AAS∴CE=AF,∴AD=CD.第13页(共19页)
+S+S20分)如图,在边长为的小正方形组成的方格纸上将△绕点顺时针旋转90°(1)画出旋转后的△AB′C;(2)以点为坐标原点,线段BC、AC所在直线分别为轴y轴建立直角坐标系,请直接写出点B′的坐标(1,1;(3)写出△ABC在旋转过程中覆盖的面积
+1
.【解答】解如图,△AB′C为所作;(2)如图,点B′的坐标为(1,1()△在旋转过程中覆盖的面积=S
扇形
′
△
B′
=
+××2=π+1.故答案为(1,1+1.21分)如图,要设计一副宽20cm、长30cm的图案,其中有两横两竖的彩条,横、竖彩条的宽度比为3,如果要使彩条所占面积是图案面积的如何设计彩条的宽度?
,应第14页(共19页)
121111112222222121111112222222【解答】解:设横彩条的宽度是2xcm,竖彩条的宽度是,则(30﹣6x﹣4x)(1
)×20×,解得x=1或x=9.∵4×9=36>,∴x=9舍去,∴横彩条的宽度是2cm,竖彩条的宽度是3cm.22分2015年十一黄金周商场大促销某店主计划从厂家采购高级羽绒服和时尚皮衣两种产品共20件,高级羽绒服的采购单价y(元/)与采购数量x(件)满足y=﹣20x+1500(<x≤20,为整数尚皮衣的采购单价y(元/)与采购数量x(件)满足y=﹣10x+1300(x≤20x为整数(1)经店主与厂家协商,采购高级羽绒服的数量不少于时尚皮衣数量,且高级羽绒服采购单价不低于1240元,问该店主共有几种进货方案?(2)该店主分别以元/件和元/的销售出高级羽绒服和时尚皮衣,且全部售完,则在()问的条件下,采购高级羽绒服多少件时总利润最大?并求最大利润.【解答】解设购买羽绒服件,则购买皮衣(20﹣x)件,则:,∴10≤x≤13且为整数,∴该店主有4种进货方案:羽绒服10件,皮衣10件;羽绒服11件,皮衣9件;羽绒服12件,皮衣8件;羽绒服13件,皮衣7件;(2)设购买羽绒服x件,利润为W元,则W=(176020x﹣1500)x+(1700+(﹣)﹣1300x)=30(﹣9+9570(10≤≤13且为整数)第15页(共19页)
∵a=30>0,∴当10≤x≤13且为整数是,随x的增大而增大,∴当x=13时,最大利润为10050元.答:当采购羽绒服13件时,有最大利润为10050元.赠送初中学几何模型【型】角:形征A
D
12
F
DF3B
4
E
C
正方形中∠=45°∠1=
12
∠推说:1.1在方形中,点、分在、CD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 进入小区施工合同范本
- 2024年伊春南岔县招聘社区工作者真题
- 2025委托加工合同
- 轴对称(一)(教案)2024-2025学年数学三年级下册-@-1
- 2024年宁德市市属事业单位考试真题
- 项目公司合营合同范本
- 2024年临汾市市属事业单位考试真题
- 2024年河南周口淮阳第二高级中学招聘教师真题
- 2024年安宁市职业高级中学专任教师招聘真题
- 2024年安徽省霍邱师范学校专任教师招聘真题
- 2020年全国硕士研究生招生考试《思想政治理论》真题及解析
- 部编人教版五年级下册语文1-8单元作文课件
- 2024年江苏省宿迁市泗阳县中考一模语文试题
- 空气洁净技术-知到答案、智慧树答案
- 2024年全国中学生学联赛广西预选赛生物试卷(解析版)
- 幼儿园游戏回顾环节培训
- 国外中学物理实验教学现状分析
- 基于核心素养的初中英语阅读教学策略讲座培训课件
- 医院国家安全主题班会
- 失信应急和响应演练记录
- 2024-2029年中国新一代信息技术行业发展分析及发展前景与投资研究报告
评论
0/150
提交评论