版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考数学复习解题建议俞新龙(浙江省绍兴县越崎中学312050)“铁打的校园,流水的学生”,2022年高考已经圆满结束,马上就要步入2022年的高考复习,虽说高考复习“岁岁年年题不同”,但实际是“年年岁岁法相似”.在此,老师愿意将2022年高考复习中同学们在解题方面需要特别注意的几方面提出来,并通过复习中遇到的具体实例讲解,供同学们参考,希望同学们能以一个良好的开端取得事半功倍的效果.一、高考复习应重视基础这是一个老生常谈的话题.简单的讲就是要重视教材中的概念、定义、公理、定理等基本知识和在学习中得到的一些有益于解题的结论.只有夯实了基础,解题才能得心应手,水到渠成.重视概念、定义、公理、定理等基本知识数学概念、定义、公理、定理等基本知识如同造房子的地基,万丈高楼拔地起,靠的是牢固的地基.因此,数学基础是解题之本,必须记忆、理解才能应用.所以,同学们应该同背语文、英语学科一样的重视将它们熟背下来.例1设点为抛物线上任一点,则的最小值为__________.P图1FAxyQ解析:该题如果通过代入解答,难以做出来,其实,本题考的仅是抛物线的定义:到焦点的距离等于到准线的距离.如图1,因为,所以的几何意义是抛物线上的点与定点的距离加上到轴的距离,而,故,即最小值为3.P图1FAxyQ例2设函数的导函数为,对任意都有成立,则()(A)(B)(C)(D)与的大小不确定解析:乍看题目,本题比较难找解题思路,但我们可以联想导数求导法则中的商的导数公式,等价于,故可构造函数,只要考虑即可,在中学阶段这样的函数容易想到是或,故可以构造函数,并且知是上增函数,从而,即,则.另一方面,我们也可以从选择子特征进行联想.与的大小比较等价于与的大小比较,从而可以联想到考虑函数的单调性,由知,所以,故是增函数,由得.也就是说,本题实际上仅考查导数运算中的商的导数公式这一法则.上面两例举的是教科书中的基础问题,同学们还应注意提高自己即时学习基础知识的能力.例3在平面斜坐标系中,点的斜坐标定义为:“若(其中,分别为与斜坐标系的轴,轴同方向的单位向量),则点的坐标为”.若,,且动点满足,则点在斜坐标系中的轨迹方程为()(A)(B)(C)(D)解析:本题的难点在于理解新概念:斜坐标定义,之后只要仿求即可.设,则,故,同理,所以,化简得.重视有益于解题结论的记忆除了教科书中用黑体表示的基础知识外,同学们在平时还能学习到许多有用的结论,这些结论的记忆、应用对解题的帮助也是很大的,也应关注它的记忆.例4已知内接于椭圆,D、E、F分别是AB、BC、CA的中点,若AB、BC、CA所在直线的斜率为、、,OD、OE、OF的斜率为、、,当++=0时,求证为常数.ABCDEFOxy图2ABCDEFOxy图2结论:斜率为的直线与椭圆相交于A、B两点,线段AB中点为P,若OP斜率为,则.用判别式法或点差法均可以证明,此处略.如若我们熟记了该结论,则当解答例4时,就可以从AB斜率、OD斜率进行思考,亦即可以得到如下证明方法:因为,,,所以==0为常数.AB图3MCDBA并且以上证明过程呈现出++为常数为常数;++为常数为常数.AB图3MCDBA例5在中,是的中点,,,则________.解析:平行四边形对角线性质:两条对角线的平方和等于四条边的平方和,同学们可以利用该性质来解.如图3,将补成平行四边形,则,得,又,所以.当然,平行四边形对角线性质也有向量形式:和,则两者平方作差得,所以.二、注意模式化解题因为考试是限时作业,除去阅读题目的时间,真正留下答题的时间大约90分钟,时间紧,任务重,所以要尽可能的熟悉各种题型的解法,不求熟能生巧,但要达到“条件反射式”的答题,这就需要同学们在复习中注意反思,总结各种题型的解法,做到“题来法出”.下面,通过具体例子给同学们罗列几类,希望同学们有选择、有重点的去总结解题模式.特殊法特殊法是指通过特殊的情形(可以是特殊值、特殊位置、特殊几何体等)来求解一般情况下的答案,一般用在客观题(即选择题和填空题)中,但也可以用在解答题中寻找解题思路.同学们知道一般情况下成立,则特殊情况必成立,这是特殊法解题的依据.特殊法以解题快捷、准确出名,但同学们只有在平时解题中有目的训练、应用才能较好掌握.见例2解析:既然该题没有具体解析式,那么可以通过特殊函数来解决.例如取,则,而此时,,所以.显然,这种方法比前面2种方法都简单.例7在中,角所对的边分别为,如果成等差数列,则__________.O图4ACDBPl解析:会由得尝试解本题,立马被否决,思维易停止.本题的一种解法是余弦定理代入,,同理,将两式代入目标式得,计算、化简要求较高,而如果同学们想到用特殊三角形来解,则比较方便,如可以是边长为3、4、5的直角三角形,当然取正三角形是最简单的,.这也告诉同学们,特殊法中“特殊”O图4ACDBPl例8如图4,在中,为上的一点,且,是的中点,过点的直线,是直线上的动点,若,则__________.P图5OPCOPACOPBACOPDBACOPxy解析:该题的解题入口:向量共线定理较难发现,因为,,,所以,则.但是,同学们可以将其特殊化来降低难度,简单化求解,例如如图5,取,,,则,,所以直线,设,则由得,从而,所以.当然最简单的应该是取点即为点,此时,,则.P图5OPCOPACOPBACOPDBACOPxy椭圆、双曲线离心率的求解离不开图形性质的应用椭圆、双曲线的离心率问题在高考中出现的频率非常高,并且一般都可以通过几何图形性质得到简解,当然,老老实实计算也可以做出来,但两者所用时间差别很大,是区分同学们数学素养的题目之一.A图6BAPBAOPBAxy例9已知双曲线:,过点作圆的两条切线,切点分别为A图6BAPBAOPBAxy(A)(B)2(C)(D)解析:同学们比较多的是通过求切点、坐标,然后由两点式斜率公式来做的,,点坐标计算较繁,要通过相切,联立方程等方法求解得,从而.而实际上,如果用圆的有关性质马上可以得斜率,如图6,因为,所以由立得,从而,解得离心率.例10已知抛物线与双曲线有相同的焦点,点是两曲线的一个交点,且轴,若为双曲线的一条斜率大于0的渐近线,则的斜率可以在下列给出的某个区间内,该区间可以是()F图7AOxy(A)(B)F图7AOxy解析:如图7,利用抛物线方程得,代入双曲线方程得,解得或(舍去),故双曲线方程为,则渐近线的斜率为.但实际上,同学们可以从图形中观察出渐近线的斜率大于的斜率2.多么方便啊!向量问题坐标解向量客观题在高考中出现的次数较多,已经成为命题创新的主阵地之一.数、形兼备是向量的特征,因此,如果能通过建系、用代数方法求解,则无疑能降低许多难度.例11已知a,b为平面内两个互相垂直的单位向量,若向量c满足c+a=(c+b)(),则|c|的最小值为________.解析:本题有如下一些解法法1:(共线定理)由c+a=(c+b)得c=(-a)+(-b),由于+=1,故c、-a、-b共线,又a,b为互相垂直的单位向量,所以|c|min=.法2:(坐标法)注意到a,b为互相垂直的单位向量,不妨设a=(1,0),b=(0,1),若记c=(x,y),则(x+1,y)=(x,y+1),接下去又有几种不同的思考方式:思考1:由得,故|c|=,问题成为的最小值,一般用导数或经过配凑后的基本不等式解决问题,下略.思考2:注意到c+a=(c+b)实际上就是c+a与c+b共线,故有(x+1)(y+1)-xy=0,即x+y+1=0,故可以看成是直线上的点到原点的最小距离,即为原点到直线的距离;也可以消元或用基本不等式.同学们,你认为命题人到底想通过本题考查什么呢?主要是考查向量坐标解法与共线定理的应用,所以法2的思考2才是本题最好的解法,并且同学们可以据此方法类似的解决下面的变式.变式1已知a,b为平面内两个互相垂直的单位向量,若向量c满足c+2a=(2c-b)(),则|c|的最小值为________.变式2已知a,b为平面内两个互相垂直的单位向量,若向量c满足(c+a)(c+b)=0,则|c|的最小值为________.变式3已知a,b为平面内两个互相垂直的向量,且|a|=1,|b|=2,若向量c满足c+2a=(c-b)(),则|c|的最小值为________.变式4已知向量a,b,c满足|a|=|b|=ab=2,(a-c)(b-2c)=0,则|b-c|的最小值为________.变式1和变式2基本上与原题相同,仅为简单模仿;变式3仅改变了b向量的坐标,简单升级;变式4要求同学们能灵活建系并得到相应向量坐标,是能力的提高.例12中,,,,为的重心,点满足,,(),则||的最小值为_______.解析:该题如果从纯粹的向量角度求解比较难,如果能从直角三角形考虑建系做,则就能通过计算解决.以、为轴、轴建立直角坐标系,则,,,从而,由,得,,则,当时取到.这样就变成了一个求二次函数最值的问题.焦点三角形问题的突破我们把椭圆或双曲线的两个焦点、及圆锥曲线上任一点构成的三角形称为焦点三角形,以这个三角形中的某些元素作为条件的圆锥曲线问题称为焦点三角形问题,该类问题在圆锥曲线的出现频率相当高,是一类常见问题,但也是同学们比较惧怕的,因为总是感觉找不到解题的入口.其实,这类焦点三角形问题有一个解决的“基本程式”,同学们只要掌握了这个“基本程式”,则焦点三角形问题就能迎刃而解.xOPy图8例13已知椭圆的焦点为、,是椭圆上一点且,求的面积.xOPy图8解析:如图8,根据椭圆定义可以知道,在中,运用余弦定理得,即,,再由三角形面积的正弦定理得.例13的分析过程,基本代表了解决焦点三角形问题的基本程式,即一般可以分以下几步操作:第1步,先运用椭圆或双曲线的定义得到或;第2步,抓住其中的一个内角(比较多的为)运用余弦定理得;由上述2步可以求出或的值,如果要求焦点三角形的面积或题中有焦点三角形的面积这个条件,则再用第3步,用三角形面积的正弦定理.同学们请注意,当为直角三角形时,余弦定理和正弦定理都将简化.只要我们掌握、理解好上述解决焦点三角形问题的基本程式,一般地说,此类圆锥曲线问题就都能比较轻松的解决了.5.等差数列类比到等比数列的规律类比、推理题在高考中时有出现,这里以等差数列与等比数列的类比为例,分析一下解题是有规律可循的.例14已知命题:“若数列为等差数列,且,则”,现已知数列为等比数列,且,若类比上述结论,则可以得到_______________.解析:本题同学们自己类比时,绝大多数同学都是错误的.究竟结果是怎样的呢?我们可以先从问题的解决方法上得到结果.设的公比为,则,故,因此.观察等差数列中与等比数列中的结果,我们就可以归纳出等差数列类比到等比数列的规律:等差数列中项前的系数转化为等比数列中项的指数;等差数列中项间的加(或减)转化为等比数列中项间的乘(或除);等差数列中的除数转化为等比数列中的开放数.此外,椭圆与双曲线、平面图形到空间立体图形的类比也都是有一定的规律可循的.注意模式化解题的道理如同“磨刀不误砍柴功”,当同学们考试中每解一道题都能顺利做出时,你肯定会有一个愉悦的心情,从而考出好成绩.三、重视三大解题思想的应用问题是数学的心脏.学习数学很大程度上就是学习解题;而数学思想是解题的灵魂,可以说能否顺利解题就取决于数学思想的掌握程度和应用能力.因此,解题学习中,贯穿数学思想的始终应是坚定不移的.数形结合、分类讨论、化归转化是高考必考的三大数学思想,同学们在解题过程中应特别重视应用能力的培养.1.数形结合所谓数形结合,是一种重要的数学思想方法.它既有数学学科的鲜明特点,又是数学研究的常用方法.其实质是将抽象的数学语言与直观的图象结合起来,在“数”“形”之间互相转化,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”寻找解题思路,从而巧妙地解决.例15已知函数,若方程有四个不同的实数根,则的取值范围为()(A)(30,34)(B)(30,36)(C)(32,34)(D)(32,36)解析:如图9所示,不妨设,则可知,故;为方程的两根,则,故.我国著名数学家华罗庚用“数缺形时少直观,形少数时难入微.”高度概括数形结合思想,但数形结合也不是万能的,在解题中也会因图形失真而出错,因此,同学们作图时应注意精确度.2.分类讨论分类讨论思想横贯高中数学的各个章节,不仅形式多样,而且具有很强的综合性和逻辑性,在中学数学中占有十分重要的地位.把所有研究的问题根据题目的特点和要求,分成若干类,转化成若干个小问题来解决,这种按不同情况分类,然后再逐一研究解决的,称之为分类讨论思想.当问题中的条件,结论不明确或题意中含或不确定时,就应分类讨论.分类讨论的原则是不重复、不遗漏.讨论的方法是逐类进行,还必须要注意综合讨论的结果,以使解题步骤完整.例16已知中心在原点,离心率为的椭圆的顶点、恰好是双曲线的左、右焦点,点是椭圆上不同于、的任意一点,则直线、的斜率之积是___________.解析:由题意知、,所以椭圆方程为,设,则,于是.这是绝大多数同学们做该题时的答案,将、默认为长轴的端点,实际上题中并没有明确,因此,还有一种情况是、为短轴的端点,此时椭圆方程为,.所以本题的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肠道病毒CoxA16型手足口病病因介绍
- 羊奶课件教学课件
- 部编版四年级语文上册第27课《故事二则》精美课件
- 部编版四年级语文上册《语文园地一》教学设计
- 部编版四年级语文上册《语文园地八》精美课件
- 细菌性上呼吸道感染病因介绍
- 《客户关系管理实务》电子教案 18实训项目:产品推介会组织开展
- 《中国历史总复习》课件
- 教科版小学综合实践6下(教案+课件)60 饮料与健康教案
- 2024版家具定制销售合同6篇
- 瓦斯抽放工比武具体实施方案
- (完整PPT)干眼的诊治课件
- 《小企鹅逛百货商店》原版有声动态PPT课件
- 冷却塔使用说明书
- 消防系统维修保养及设施检测技术方案
- 小学生体育锻炼打卡表(打印版)
- 那些伴我成长动画片6.2
- 室外消防及给水管道施工方案
- 最新肿瘤科-胃癌中医临床路径(试行版)
- 中国地理知识(全面)(课堂PPT)
- 中重型载货汽车总布置设计规范
评论
0/150
提交评论