版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教师姓名学生姓名教材版本人教版学科名称数学年级高一上上课时间2022.课题名称两个平面垂直的判定和性质教学目标1.了解空间直线和平面的位置关系;
2.掌握直线和平面平行的判定定理和性质定理;进一步熟悉反证法的实质及其一般解题步骤.教学重点线面垂直的判定和性质。教学过程备注一、知识要点:1.二面角定义
平面内的一条直线把平面分成两部分,这两部分通常称为半平面.从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫二面角的棱,这两个半平面叫做二面角的面.
表示方法:棱为、面分别为的二面角记作二面角.有时为了方便,也可在内(棱以外的半平面部分)分别取点,将这个二面角记作二面角.如果棱记作,那么这个二面角记作二面角或.
2.二面角的平面角
在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的射线,则这两条构成的角叫做二面角的平面角.
二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度.平面角是直角的二面角叫做直二面角.
3.平面与平面垂直定义
两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面垂直.
表示方法:平面与垂直,记作.
画法:两个互相垂直的平面通常把直立平面的竖边画成与水平平面的横边垂直.如图:
4.平面与平面垂直的判定定理
判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.
符号语言:
图形语言:
特征:线面垂直面面垂直
要点诠释:
平面与平面垂直的判定定理告诉我们,可以通过直线与平面垂直来证明平面与平面垂直.通常我们将其记为“线面垂直,则面面垂直”.因此,处理面面垂直问题处理线面垂直问题,进一步转化为处理线线垂直问题.以后证明平面与平面垂直,只要在一个平面内找到两条相交直线和另一个平面垂直即可.5.平面与平面垂直的性质
性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.
符号语言:
图形语言:
典型例题:例1.如图所示,在四面体ABCD中,△ABD、△ACD、△BCD、△ABC都全等,且,,求以BC为棱,以面BCD和面BCA为面的二面角大小.
例2.在四面体ABCD中,,AB=AD=CB=CD=AC=,如图所示.求证:平面ABD⊥平面BCD.
例3、如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆O上任一点,请写出图中互相垂直的平面,并说明理由。
例4、已知:如图,将矩形ABCD沿对角线BD将折起,使点C移到点,且三、课堂练习:1、条件的正确填写:(1)由线面垂直证明面面垂直的训练:①如左图:∵PC⊥平面ABCD,∴平面PCD⊥平面ABCD②如左图:∵CD⊥平面PCB,∴平面ABCD⊥平面PCB③如左图:∵⊥平面PCD,∴平面PCB⊥平面PCD(2)由面面垂直证明线面垂直的训练:①如左图:由3个条件:平面BAP⊥平面PAD,和可证:BA⊥平面PDA②如左图:由3个条件:平面PAC⊥平面ABCD,和可证:BD⊥平面PAC③如左图:由3个条件:,PA⊥AB和可证:PA⊥平面ABCD④如上图:∵,和∴CD⊥平面PAD2、简单的证明题:(1)底面是正方形的四棱锥P-ABCD中,(2)底面是正方形的四棱锥P-ABCD中,PC⊥CD,求证:平面PCD⊥平面PCB平面PAC⊥平面ABCD,求证:BD⊥PC3、中档的证明题:(1)如图,在正方体ABCD-EFGH中(2)如图:VA=VB=VC,∠ACB=90°,求证:平面BED⊥平面AEGC∠CVA=∠CVB=60°求证:平面ACB⊥平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024冷库租赁合同书范本(适用小型企业)
- 2024年度互联网广告技术服务合同
- 2024年买卖合同标的为新能源汽车
- 2024年度影视制作与发行承包合同
- 2024年度房地产商业综合体建设项目施工合同
- 公租房个人收入证明(12篇)
- 2024年度安置房社区文化活动合同
- 手机教学课件教学
- 2024年度品牌合作框架协议
- 2024年度特许经营合同标的及许可使用范围
- 海洋工程柔性立管发展概况
- 汉语教师志愿者培训大纲
- 护理导论 评判性思维
- SPC培训资料_2
- 学习适应性测验(AAT)
- ADS创建自己的元件库
- MATLAB仿真三相桥式整流电路(详细完美)
- 2019年重庆普通高中会考通用技术真题及答案
- 天秤座小奏鸣曲,Libra Sonatine;迪安斯,Roland Dyens(古典吉他谱)
- 钢筋混凝土工程施工及验收规范最新(完整版)
- 光缆施工规范及要求
评论
0/150
提交评论