2023年黑龙江省牡丹江市普通高校对口单招数学自考预测试题(含答案)_第1页
2023年黑龙江省牡丹江市普通高校对口单招数学自考预测试题(含答案)_第2页
2023年黑龙江省牡丹江市普通高校对口单招数学自考预测试题(含答案)_第3页
2023年黑龙江省牡丹江市普通高校对口单招数学自考预测试题(含答案)_第4页
2023年黑龙江省牡丹江市普通高校对口单招数学自考预测试题(含答案)_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年黑龙江省牡丹江市普通高校对口单招数学自考预测试题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.已知点A(1,-3)B(-1,3),则直线AB的斜率是()A.

B.-3

C.

D.3

2.设平面向量a(3,5),b(-2,1),则a-2b的坐标是()A.(7,3)B.(-7,-3)C.(-7,3)D.(7,-3)

3.设集合A={1,2,4},B={2,3,4},则A∪B=()A.{1,2}B.{2,4}C.{1,2,3,4}D.{1,2,3}

4.函数1/㏒2(x-2)的定义域是()A.(-∞,2)B.(2,+∞)C.(2,3)U(3,+∞)D.(2,4)U(4,+∞)

5.A.B.C.D.

6.当时,函数的()A.最大值1,最小值-1

B.最大值1,最小值

C.最大值2,最小值-2

D.最大值2,最小值-1

7.下列句子不是命题的是A.

B.

C.

D.

8.设a,b为实数,则a2=b2的充要条件是()A.a=bB.a=-bC.a2=b2

D.|a|=|b|

9.下列表示同一函数的是()A.f(x)=x2/x+1与f(x)=x—1

B.f(x)=x0(x≠0)与f(x)=1

C.

D.f(x)=2x+l与f(t)=2t+1

10.A.B.C.D.R

11.直线ax+by+b-a=0与圆x2+y2-x-2=0的位置关系是()A.相离B.相交C.相切D.无关

12.已知点A(1,-1),B(-1,1),则向量为()A.(1,-1)B.(-1,1)C.(0,0)D.(-2,2)

13.已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为()A.(x+1)2+(y-1)2=2

B.(x-1)2+(y+1)2=2

C.(x-1)2+(y-1)2=2

D.(x+1)2+(y+1)2=2

14.下列四个命题:①垂直于同一条直线的两条直线相互平行;②垂直于同一个平面的两条直线相互平行;③垂直于同一条直线的两个平面相互平行;④垂直于同一个平面的两个平面相互平行.其中正确的命题有()A.1个B.2个C.3个D.4个

15.函数f(x)的定义域是()A.[-3,3]B.(-3,3)C.(-,-3][3,+)D.(-,-3)(3,+)

16.下列函数中,是增函数,又是奇函数的是(〕A.y=

B.y=1/x

C.y=x2

D.y=x1/3

17.已知一元二次不等式ax2+bx+1>0的解是<x<,那么()A.

B.

C.

D.

18.5人站成一排,甲、乙两人必须站两端的排法种数是()A.6B.12C.24D.120

19.已知向量a(3,-1),b(1,-2),则他们的夹角是()A.

B.

C.

D.

20.A.{-3}

B.{3}

C.{-3,3}

D.

二、填空题(10题)21.圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4),B(0,一2),则圆C的方程为___________.

22.

23.某田径队有男运动员30人,女运动员10人.用分层抽样的方法从中抽出一个容量为20的样本,则抽出的女运动员有______人.

24.若△ABC中,∠C=90°,,则=

25.

26.不等式|x-3|<1的解集是

27.抛物线y2=2x的焦点坐标是

28.等差数列的前n项和_____.

29.若复数,则|z|=_________.

30.若l与直线2x-3y+12=0的夹角45°,则l的斜线率为_____.

三、计算题(10题)31.解不等式4<|1-3x|<7

32.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.

33.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

34.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

35.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.

36.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

37.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

38.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

39.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

40.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.

四、简答题(10题)41.化简

42.已知抛物线y2=4x与直线y=2x+b相交与A,B两点,弦长为,求b的值。

43.设函数是奇函数(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)当x<0时,判断f(x)的单调性并加以证明.

44.等比数列{an}的前n项和Sn,已知S1,S3,S2成等差数列(1)求数列{an}的公比q(2)当a1-a3=3时,求Sn

45.已知函数.(1)求f(x)的定义域;(2)判断f(x)的奇偶性,并加以证明;(3)a>1时,判断函数的单调性并加以证明。

46.等差数列的前n项和为Sn,已知a10=30,a20=50。(1)求通项公式an。(2)若Sn=242,求n。

47.某篮球运动员进行投篮测验,每次投中的概率是0.9,假设每次投篮之间没有影响(1)求该运动员投篮三次都投中的概率(2)求该运动员投篮三次至少一次投中的概率

48.已知等差数列{an},a2=9,a5=21(1)求{an}的通项公式;(2)令bn=2n求数列{bn}的前n项和Sn.

49.已知cos=,,求cos的值.

50.解关于x的不等式

五、解答题(10题)51.已知椭圆的中心为原点,焦点在x轴上,离心率为,且经过点M(4,1),直线l:y=x+m交椭圆于异于M的不同两点A,B直线MA,MB与x轴分别交于点E,F.(1)求椭圆的标准方程;(2)求m的取值范围.

52.

53.

54.在锐角△ABC中,内角A,B,C所对的边分别是a,b,c(1)求c的值;(2)求sinA的值.

55.已知函数f(x)=2sin(x-π/3).(1)写出函数f(x)的周期;(2)将函数f(x)图象上所有的点向左平移π/3个单位,得到函数g(x)的图象,写出函数g(x)的表达式,并判断函数g(x)的奇偶性.

56.

57.组成等差数列的三个正数的和等于15,并且这三个数列分别加上1、3、5后又成等比数列,求这三个数

58.

59.

60.

六、单选题(0题)61.tan960°的值是()A.

B.

C.

D.

参考答案

1.B

2.A由题可知,a-2b=(3,5)-2(-2,1)=(7,3)。

3.C集合的并集.由两集合并集的定义可知,A∪B={1,2,3,4},故选C

4.C函数的定义.由题知以该函数的定义域为(2,3)∪(3,+∞)

5.A

6.D,因为,所以,,,所以最大值为2,最小值为-1。

7.C

8.D

9.D函数的定义域与对应关系.A、B中定义域不同;C中对应关系不同;D表示同一函数

10.B

11.B

12.D平面向量的线性运算.AB=(-1-1,1-(-1)=(-2,2).

13.B

14.B直线与平面垂直的性质,空间中直线与直线之间的位置关系.①垂直于同一条直线的两条直线相互平行,不正确,如正方体的一个顶角的三个边就不成立;②垂直于同一个平面的两条直线相互平行,根据线面垂直的性质定理可知正确;③垂直于同一条直线的两个平面相互平行,根据面面平行的判定定理可知正确;④垂直于同一个平面的两个平面相互平行,不正确,如正方体相邻的三个面就不成立.

15.B由题可知,3-x2大于0,所以定义域为(-3,3)

16.D函数奇偶性和单调性的判断.奇函数只有B,D,而B不是增函数.

17.B由一元二次方程得求根公式可知,x1x2=-b/2a/=-1/3,所以b/a=-1/6.

18.B

19.B因为,所以,,因此,由于两向量夹角范围为[0,π],所以夹角为π/4。

20.C

21.(x-2)2+(y+3)2=5圆的方程.圆心在AB中垂线y=-3上又在2x-y-7=0上,所以C(2,-3),CA=,所以圆C的方程为(x-2)2+(y+3)2=5

22.1

23.5分层抽样方法.因为男运动员30人,女运动员10人,所以抽出的女运动员有10f(10+30)×20=1/4×20=5人.

24.0-16

25.(1,2)

26.

27.(1/2,0)抛物线y2=2px(p>0)的焦点坐标为F(P/2,0)。∵抛物线方程为y2=2x,

∴2p=2,得P/2=1/2

∵抛物线开口向右且以原点为顶点,

∴抛物线的焦点坐标是(1/2,0)。

28.2n,

29.

复数的模的计算.

30.5或,

31.

32.

33.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

34.

35.

36.

37.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

38.

39.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

40.

41.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2

42.

43.

∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴

∴得0<b<∵b∈Z∴b=1∴(2)设-1<<<0∵

若时

故当X<-1时为增函数;当-1≤X<0为减函数

44.

45.(1)-1<x<1(2)奇函数(3)单调递增函数

46.

47.(1)P=0.9×0.9×0.9=0.729(2)P=1-0.1×0.1×0.1=0.999

48.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)

∴数列为首项b1=32,q=16的等比数列

49.

50.

51.(1)设椭圆的方程为x2/a2+y2/b2=1因为e=,所以a2=4b2,又因为椭圆过点M(4,1),所以16/a2+1/b2=1,解得b2=5,a2=20,故椭圆标准方x2/20+y2/5=1(2)将y=m+x:代入x2/20+y2/5=1并整理得5x2+8mx+4m2-20=0令△=(8m2)-20(4m2-20)>0,解得-5<m<5.又由题意可知直线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论