版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年安徽省铜陵市普通高校对口单招数学自考真题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(22题)1.复数z=2i/1+i的共轭复数是()A.1+iB.1-iC.1/2+1/2iD.1/2-1/2i
2.若集合A={1,2,3},B={1,3,4},则A∩B的子集的个数为()A.2B.3C.4D.16
3.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台
4.“没有公共点”是“两条直线异面”的()A.充分而不必要条件B.充分必要条件C.必要而不充分条件D.既不充分也不必要条件
5.三角函数y=sinx2的最小正周期是()A.πB.0.5πC.2πD.4π
6.若tanα>0,则()A.sinα>0B.cosα>0C.sin2α>0D.cos2α>0
7.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4B.5C.6D.7
8.不等式lg(x-1)的定义域是()A.{x|x<0}B.{x|1<x}C.{x|x∈R}D.{x|0<x<1}
9.直线x-y=0,被圆x2+y2=1截得的弦长为()A.
B.1
C.4
D.2
10.拋掷两枚骰子,两次点数之和等于5的概率是()A.
B.
C.
D.
11.{已知集合A={-1,0,1},B={x|-1≤x<1}则A∩B=()A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}
12.在等差数列{an}中,若a2=3,a5=9,则其前6项和S6=()A.12B.24C.36D.48
13.已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为()A.(x+1)2+(y-1)2=2
B.(x-1)2+(y+1)2=2
C.(x-1)2+(y-1)2=2
D.(x+1)2+(y+1)2=2
14.“x=-1”是“x2-1=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
15.如图所示的程序框图中,输出的a的值是()A.2B.1/2C.-1/2D.-1
16.函数在(-,3)上单调递增,则a的取值范围是()A.a≥6B.a≤6C.a>6D.-8
17.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()A.内切B.相交C.外切D.相离
18.已知全集U={1,2,3,4,5},集合A={1,2,5},={1,3,5},则A∩B=()A.{5}B.{2}C.{1,2,4,5}D.{3,4,5}
19.A.(5,10)B.(-5,-10)C.(10,5)D.(-10,-5)
20.椭圆x2/16+y2/9的焦点坐标为()A.(,0)(-,0)
B.(4,0)(-4,0)
C.(3,0)(-3,0)
D.(7,0)(-7,0)
21.若sin(π/2+α)=-3/5,且α∈[π/2,π]则sin(π-2α)=()A.24/25B.12/25C.-12/25D.-24/25
22.A.1B.-1C.2D.-2
二、填空题(10题)23.1+3+5+…+(2n-b)=_____.
24.已知i为虚数单位,则|3+2i|=______.
25.
26.函数y=3sin(2x+1)的最小正周期为
。
27.己知0<a<b<1,则0.2a
0.2b。
28.圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4),B(0,一2),则圆C的方程为___________.
29.
30.设{an}是公比为q的等比数列,且a2=2,a4=4成等差数列,则q=
。
31.要使的定义域为一切实数,则k的取值范围_____.
32.等差数列中,a1>0,S4=S9,Sn取最大值时,n=_____.
三、计算题(10题)33.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
34.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
35.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。
36.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
37.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
38.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
39.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
40.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
41.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。
42.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
四、简答题(10题)43.等差数列的前n项和为Sn,已知a10=30,a20=50。(1)求通项公式an。(2)若Sn=242,求n。
44.在ABC中,AC丄BC,ABC=45°,D是BC上的点且ADC=60°,BD=20,求AC的长
45.化简
46.已知求tan(a-2b)的值
47.证明:函数是奇函数
48.已知函数.(1)求f(x)的定义域;(2)判断f(x)的奇偶性,并加以证明;(3)a>1时,判断函数的单调性并加以证明。
49.解不等式组
50.据调查,某类产品一个月被投诉的次数为0,1,2的概率分别是0.4,0.5,0.1,求该产品一个月内被投诉不超过1次的概率
51.拋物线的顶点在原点,焦点为椭圆的左焦点,过点M(-1,-1)引抛物线的弦使M为弦的中点,求弦长
52.某商场经销某种商品,顾客可采用一次性付款或分期付款购买,根据以往资料统计,顾客采用一次性付款的概率是0.6,求3为顾客中至少有1为采用一次性付款的概率。
五、解答题(10题)53.成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{bn}中的b3,b4,b5(1)求数列{bn}的通项公式;(2)数列{bn}的前n项和为Sn,求证:数列{Sn+5/4}是等比数列
54.已知函数(1)f(π/6)的值;(2)求函数f(x)的最小正周期和单调递增区间.
55.
56.
57.已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为,在C上;(1)求C的方程;(2)直线L不过原点O且不平行于坐标轴,L与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线L的斜率的乘积为定值.
58.李经理按照市场价格10元/千克在本市收购了2000千克香菇存放人冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式;(2)李经理如果想获得利润22500元,需将这批香菇存放多少天后出售?(提示:利润=销售总金额一收购成本一各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?
59.已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当直线l过圆心C时,求直线l的方程;(2)当直线l的倾斜角为45°时,求弦AB的长.
60.A.90B.100C.145D.190
61.已知数列{an}是公差不为0的等差数列a1=2,且a2,a3,a4+1成等比数列.(1)求数列{an}的通项公式;(2)设bn=2/n(an+2),求数列{bn}的前n项和Sn.
62.如图,AB是⊙O的直径,P是⊙O所在平面外一点,PA垂直于⊙O所在的平面,且PA=AB=10,设点C为⊙O上异于A,B的任意一点.(1)求证:BC⊥平面PAC;(2)若AC=6,求三棱锥C-PAB的体积.
六、单选题(0题)63.A.B.C.D.
参考答案
1.B共轭复数的计算.z=2i/1+i=2i(1-i)f(1+i)(1-i)=1+i复数z=2i/1的共扼复数是1-i.
2.C集合的运算.A∩B={1,3},其子集为22=4个
3.D空间几何体的三视图.从俯视图可看出该几何体上下底面为半径不等的圆,正视图与侧视图为等腰梯形,故此几何体为圆台.
4.C
5.A
6.C三角函数值的符号.由tanα>0,可得α的终边在第一象限或第三象限,此时sinα与cosα同号,故sin2α=2sinαcosα>0
7.C分层抽样方法.四类食品的比例为4:1:3:2,则抽取的植物油类的数量为20×1/10=2,抽取的果蔬类的数量为20×2/10=4,二者之和为6,
8.B
9.D直线与圆相交的性质.直线x-y=0过圆心(0,0),故该直线被圆x2+y2=1所截弦长为圆的直径的长度2.
10.A
11.B集合的运算.A中的元素-1,0在B中,1不在B中,所以A∩B={-1,0}.
12.C等差数列前n项和公式.设
13.B
14.A命题的条件.若x=-1则x2=1,若x2=1则x=±1,
15.D程序框图的运算.执行如下,a=2,2>0,a=1/2,1/2>0,a=-l,-1<0,退出循环,输出-1。
16.A
17.B圆与圆的位置关系,两圆相交
18.B集合的运算.由CuB={1,3,5}得B={2,4},故A∩B={2}.
19.B
20.A椭圆的定义c2=a2-b2=7,所以c=,所以焦点坐标为(,0)(-,0).
21.D同角三角函数的变换,倍角公式.由sin(π/2+α)=-3/5得cosα=-3/5,又α∈[π/2,π],则sinα=4/5,所以sin(π-2α)=sin2α=2sinαcosα==2×4/5×(-3/5)=-24/25.
22.A
23.n2,
24.
复数模的计算.|3+2i|=
25.2/5
26.
27.>由于函数是减函数,因此左边大于右边。
28.(x-2)2+(y+3)2=5圆的方程.圆心在AB中垂线y=-3上又在2x-y-7=0上,所以C(2,-3),CA=,所以圆C的方程为(x-2)2+(y+3)2=5
29.-2i
30.
,由于是等比数列,所以a4=q2a2,得q=。
31.-1≤k<3
32.6或7,由题可知,4a1+6d=9a1+36d,解得a1=-6d,所以Sn=-6dn+n(n+1)d/2=,又因为a1大于0,d小于0,所以当n=6或7时,Sn取最大值。
33.
34.
35.
36.
37.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
38.
39.
40.
41.
42.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
43.
44.在指数△ABC中,∠ABC=45°,AC=BC在直角△ADC中,∠ADC=60°,CD=ACCD=BC-BD,BD=20则,则
45.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2
46.
47.证明:∵∴则,此函数为奇函数
48.(1)-1<x<1(2)奇函数(3)单调递增函数
49.x2-6x+8>0,∴x>4,x<2(1)(2)联系(1)(2)得不等式组的解集为
50.设事件A表示“一个月内被投诉的次数为0”,事件B表示“一个月内被投诉的次数为1”∴P(A+B)=P(A)+P(B)=0.4+0.5=0.9
51.
52.
53.(1)设成等差数列的三个正数分别为a-d,a,a+d依题意,得a-d+a+a+d=15,解得a=5,所以{bn}中的,b3,b4,b5依次为7-d,10,18+d依题意,有(7-d)(18+d)=100,解得d=2或d=-13,又因为成等差数列的三个数为正数,所以d=2.故{bn}的第3项为5,公比为2;由b3=b1×22,即5=b1×22,解得b1=f;所以{bn}是以5/4为首项,2为公比的等比数列,其通项公式为bn=5/4×2n-1=5×2n-3.
54.
55.
56.
57.
58.(1)由题意,y与x之间的函数关系式为y=(10+0.5x)(2000-6x)=-3x2+940x+20000(l≤x≤110
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度全方位知识产权保护与运营合作协议书3篇
- 2024年一口价建筑成本合同包含建筑智能化、安防系统等配套设施3篇
- 2024年汽车展会场地租赁与车辆销售合同范本3篇
- 煤炭行业环境保护与治理考核试卷
- 招商引资课程设计
- 温控智能风扇课程设计
- 2024年打桩机租赁与施工质量监督合同3篇
- 电商环境下毛皮服装销售考核试卷
- 2024年度水利工程地砖采购及水保生态合同3篇
- 特色手工美术课课程设计
- 2024年中国人保行测笔试题库
- 初++中数学设计学校田径运动会比赛场地+课件++人教版七年级数学上册
- 2024年秋八年级英语上册 Unit 7 Will people have robots教案 (新版)人教新目标版
- 2《永遇乐京口北固亭怀古》同步练习(含答案)统编版高中语文必修上册-3
- 微积分试卷及规范标准答案6套
- 蓝色国家科学基金16.9杰青优青人才科学基金答辩模板
- 自来水的供水环保与生态协调
- 羽毛球馆运营管理指南
- 销售储备培养方案
- 【电动汽车两挡变速器结构设计10000字(论文)】
- 粮油仓储管理员职业等级考试知识题
评论
0/150
提交评论