




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年山西省朔州市普通高校对口单招数学自考预测试题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.椭圆的焦点坐标是()A.(,0)
B.(±7,0)
C.(0,±7)
D.(0,)
2.在等差数列{an}中,a1=2,a3+a5=10,则a7=()A.5B.8C.10D.14
3.直线ax+by+b-a=0与圆x2+y2-x-2=0的位置关系是()A.相离B.相交C.相切D.无关
4.顶点坐标为(-2,-3),焦点为F(-4,3)的抛物线方程是()A.(y-3)2=-4(x+2)
B.(y+3)2=4(x+2)
C.(y-3)2=-8(x+2)
D.(y+3)2=-8(x+2)
5.从1,2,3,4这4个数中任取两个数,则取出的两数之和是奇数的概率是()A.1/5B.1/5C.2/5D.2/3
6.若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a取值范围是()A.[―3,一1]B.[―1,3]C.[-3,1]D.(-∞,一3]∪[1,+∞)
7.若102x=25,则10-x等于()A.
B.
C.
D.
8.过点M(2,1)的直线与x轴交与P点,与y轴交与交与Q点,且|MP|=|MQ|,则此直线方程为()A.x-2y+3=0B.2x-y-3=0C.2x+y-5=0D.x+2y-4=0
9.公比为2的等比数列{an}的各项都是正数,且a3a11=16,则a5=()A.1B.2C.4D.8
10.设集合U={1,2,3,4,5,6},M={1,3,5},则C∪M=()A.{2,4,6}B.{1,3,5}C.{1,2,4}D.U
11.等差数列{an}中,若a2+a4+a9+a11=32,则a6+a7=()A.9B.12C.15D.16
12.以坐标轴为对称轴,离心率为,半长轴为3的椭圆方程是()A.
B.或
C.
D.或
13.A.x=y
B.x=-y
C.D.
14.已知函数f(x)=x2-x+1,则f(1)的值等于()A.-3B.-1C.1D.2
15.A.B.C.
16.A.一B.二C.三D.四
17.5人排成一排,甲必须在乙之后的排法是()A.120B.60C.24D.12
18.已知让点P到椭圆的一个焦点的距离为3,则它到另一个焦点的距离为()A.2B.3C.5D.7
19.已知logN10=,则N的值是()A.
B.
C.100
D.不确定
20.A.11B.99C.120D.121
二、填空题(10题)21.
22.函数f(x)=-X3+mx2+1(m≠0)在(0,2)内的极大值为最大值,则m的取值范围是________________.
23.己知两点A(-3,4)和B(1,1),则=
。
24._____;_____.
25.已知_____.
26.
27.以点(1,0)为圆心,4为半径的圆的方程为_____.
28.
29.设等差数列{an}的前n项和为Sn,若S8=32,则a2+2a5十a6=_______.
30.
三、计算题(5题)31.解不等式4<|1-3x|<7
32.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
33.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
34.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
35.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
四、简答题(10题)36.如图:在长方体从中,E,F分别为和AB和中点。(1)求证:AF//平面。(2)求与底面ABCD所成角的正切值。
37.已知的值
38.求证
39.化简
40.以点(0,3)为顶点,以y轴为对称轴的拋物线的准线与双曲线3x2-y2+12=0的一条准线重合,求抛物线的方程。
41.已知抛物线y2=4x与直线y=2x+b相交与A,B两点,弦长为,求b的值。
42.已知a是第二象限内的角,简化
43.如图,在直三棱柱中,已知(1)证明:AC丄BC;(2)求三棱锥的体积.
44.三个数a,b,c成等差数列,公差为3,又a,b+1,c+6成等比数列,求a,b,c。
45.已知椭圆和直线,求当m取何值时,椭圆与直线分别相交、相切、相离。
五、证明题(10题)46.己知
a
=(-1,2),b
=(-2,1),证明:cos〈a,b〉=4/5.
47.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2
+(y+1)2
=8.
48.若x∈(0,1),求证:log3X3<log3X<X3.
49.
50.己知sin(θ+α)=sin(θ+β),求证:
51.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.
52.△ABC的三边分别为a,b,c,为且,求证∠C=
53.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.
54.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.
55.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.
六、综合题(2题)56.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
57.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.
参考答案
1.D
2.B等差数列的性质.由等差数列的性质得a1+a7=a3+a5,因为a1=2,a3+a5=10,所以a7=8,
3.B
4.C四个选项中,只有C的顶点坐标为(-2,3),焦点为(-4,3)。
5.D古典概型的概率.任意取到两个数的方法有6种:1,2;1,3;1,4;2,3;2,4;3,4;,满足题意的有4种:1,2;1,4;2,3;3,4;,则所求的概率为4/6=2/3
6.C直线与圆的公共点.圆(x-a)2+y2=2的圆心C(a,0)到x-y+1=0
7.B
8.D
9.A
10.A集合补集的计算.C∪M={2,4,6}.
11.D∵{an}是等差数列,所以a2+a11=a4+a9=a6+a7.∵a2+a4+a9+a11=32,所以a6+a7=16.
12.B由题意可知,焦点在x轴或y轴上,所以标准方程有两个,而a=3,c/a=1/3,所以c=1,b2=8,因此答案为B。
13.D
14.C函数值的计算f(1)=1-1+1=1.
15.C
16.A
17.C
18.D
19.C由题可知:N1/2=10,所以N=100.
20.C
21.
22.(0,3).利用导数求函数的极值,最值.f(x)=-3x2+2mx=x(-3x+2m).令f(x)=0,得x=0或x=2m/3因为x∈(0,2),所以0<2m/3<2,0<m<3.答案:(0,3).
23.
24.2
25.
26.12
27.(x-1)2+y2=16圆的方程.当圆心坐标为(x0,y0)时,圆的-般方程为(x-x0)+(y-y0)=r2.所以,(x-1)2+y2=16
28.7
29.16.等差数列的性质.由S8=32得4(a4+a5)=8,故a2+2a5+a6=2(a4+a5)=16.
30.56
31.
32.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
33.
34.
35.
36.
37.
∴∴则
38.
39.
40.由题意可设所求抛物线的方程为准线方程为则y=-3代入得:p=12所求抛物线方程为x2=24(y-3)
41.
42.
43.
44.由已知得:由上可解得
45.∵∴当△>0时,即,相交当△=0时,即,相切当△<0时,即,相离
46.
47.
48.
49.
50.
51.
∴PD//平面ACE.
52.
53.
54.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即
55.证明:考虑对数函数y=lgx的限制知
:当x∈(1,10)时,y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B
56.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),圆与两坐标轴相切,故a=±b又圆心在直线5x-3y-8=0上,将a=b或a=-b代入直线方程得:a=4或a=1当a=4时,b
=4,此时r=4,圆的方程为(x-4)2
+(y-4)2=16当a=1时,b
=-1,此时r=1,圆的方程为(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年网络伦理与社会责任考试试题及答案
- 2025年设计类院校艺术考试模拟卷及答案
- 2025年媒体与传播管理考试试题及答案
- 智能监控技术在2025年智慧港口建设中的应用实施方案报告
- 特殊快递安全管理制度
- 特殊物品人员管理制度
- 特殊货物报备管理制度
- 特种医疗设备管理制度
- 狂犬门诊工作管理制度
- 玉米大豆套种管理制度
- 模具保养记录表
- 形象店加盟管理方案
- 1.《郑人买履》课件PPT
- T∕ZS 0128-2020 既有建筑结构安全智慧监测技术规程
- 发电机定子绕组泄漏电流和直流耐压试验作业指导书
- 冀教版小学美术六年级下册教案
- 甘肃省生态功能区划
- DB22∕T 1073-2011 绿色淫羊藿生产技术规程
- 教练技术LP三阶段教练手册
- 国家开放大学《人文英语3》章节测试参考答案
- 钻孔灌注桩超灌混凝土管理办法
评论
0/150
提交评论