版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年陕西省铜川市普通高校对口单招数学自考真题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.设a>b>0,c<0,则下列不等式中成立的是A.ac>bc
B.
C.
D.
2.A.B.C.D.
3.函数f(x)=的定义域是()A.(0,+∞)B.[0,+∞)C.(0,2)D.R
4.执行如图的程序框图,那么输出S的值是()A.-1B.1/2C.2D.1
5.若向量A.(4,6)B.(-4,-6)C.(-2,-2)D.(2,2)
6.函数f(x)的定义域是()A.[-3,3]B.(-3,3)C.(-,-3][3,+)D.(-,-3)(3,+)
7.己知向量a=(3,-2),b=(-1,1),则3a+2b
等于()A.(-7,4)B.(7,4)C.(-7,-4)D.(7,-4)
8.5人排成一排,甲必须在乙之后的排法是()A.120B.60C.24D.12
9.过点A(-1,0),B(0,-1)直线方程为()A.x+y-1=0B.x-y-1=0C.x+y+l=0D.x-y+l=0
10.已知互为反函数,则k和b的值分别是()A.2,
B.2,
C.-2,
D.-2,
11.A.B.C.D.
12.
13.三角函数y=sinx2的最小正周期是()A.πB.0.5πC.2πD.4π
14.设Sn为等差数列{an}的前n项和,S8=4a3,a7=-2,则a9等于()A.-6B.-4C.-2D.2
15.直线:y+4=0与圆(x-2)2+(y+l)2=9的位置关系是()
A.相切B.相交且直线不经过圆心C.相离D.相交且直线经过圆心
16.设集合A={1,2,4},B={2,3,4},则A∪B=()A.{1,2}B.{2,4}C.{1,2,3,4}D.{1,2,3}
17.在ABC中,C=45°,则(1-tanA)(1-tanB)=()A.1B.-1C.2D.-2
18.设A-B={x|x∈A且xB},若M={4,5,6,7,8},N={7,8,9,10}则M-N等于()A.{4,5,6,7,8,9,10}B.{7,8}C.{4,5,6,9,10}D.{4,5,6}
19.已知椭圆x2/25+y2/m2=1(m>0)的左焦点为F1(-4,0)则m=()A.2B.3C.4D.9
20.设全集={a,b,c,d},A={a,b}则C∪A=()A.{a,b}B.{a,c}C.{a,d)D.{c,d}
二、填空题(10题)21.函数f(x)=+㏒2x(x∈[1,2])的值域是________.
22.不等式(x-4)(x+5)>0的解集是
。
23.Ig2+lg5=_____.
24.己知等比数列2,4,8,16,…,则2048是它的第()项。
25.若ABC的内角A满足sin2A=则sinA+cosA=_____.
26.设集合,则AB=_____.
27.在锐角三角形ABC中,BC=1,B=2A,则=_____.
28.秦九昭是我国南宋时期的数学家,他在所著的《数学九章》中提出的多项式求值的秦九昭算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九昭算法求某多项式值的一个实例,若输入n,x的值分别为3,4,则输出v的值为________.
29.过点A(3,2)和点B(-4,5)的直线的斜率是_____.
30.
三、计算题(10题)31.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
32.解不等式4<|1-3x|<7
33.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
34.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。
35.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
36.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
37.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
38.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
39.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
40.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
四、简答题(10题)41.已知函数,且.(1)求a的值;(2)求f(x)函数的定义域及值域.
42.已知等差数列{an},a2=9,a5=21(1)求{an}的通项公式;(2)令bn=2n求数列{bn}的前n项和Sn.
43.已知求tan(a-2b)的值
44.已知椭圆和直线,求当m取何值时,椭圆与直线分别相交、相切、相离。
45.解不等式组
46.化简
47.求过点P(2,3)且被两条直线:3x+4y-7=0,:3x+4y+8=0所截得的线段长为的直线方程。
48.求k为何值时,二次函数的图像与x轴(1)有2个不同的交点(2)只有1个交点(3)没有交点
49.化简
50.设等差数列的前n项数和为Sn,已知的通项公式及它的前n项和Tn.
五、解答题(10题)51.已知函数(1)f(π/6)的值;(2)求函数f(x)的最小正周期和单调递增区间.
52.已知等差数列{an}的公差为2,其前n项和Sn=pnn+2n,n∈N(1)求p的值及an;(2)在等比数列{bn}中,b3=a1,b4=a2+4,若{bn}的前n项和为Tn,求证:数列{Tn+1/6}为等比数列.
53.组成等差数列的三个正数的和等于15,并且这三个数列分别加上1、3、5后又成等比数列,求这三个数
54.给定椭圆C:x2/a2+y2/b2(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆已知椭圆C的离心率为/2,且经过点(0,1).(1)求椭圆C的方程;(2)求直线l:x—y+3=0被椭圆C的伴随圆C1所截得的弦长.
55.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
56.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是().A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样
57.2017年,某厂计划生产25吨至45吨的某种产品,已知生产该产品的总成本y(万元)与总产量x(吨)之间的关系可表示为y=x2/10-2x+90.(1)求该产品每吨的最低生产成本;(2)若该产品每吨的出厂价为6万元,求该厂2017年获得利润的最大值.
58.已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为,在C上;(1)求C的方程;(2)直线L不过原点O且不平行于坐标轴,L与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线L的斜率的乘积为定值.
59.李经理按照市场价格10元/千克在本市收购了2000千克香菇存放人冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式;(2)李经理如果想获得利润22500元,需将这批香菇存放多少天后出售?(提示:利润=销售总金额一收购成本一各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?
60.某学校高二年级一个学习兴趣小组进行社会实践活动,决定对某“著名品牌”A系列进行市场销售量调研,通过对该品牌的A系列一个阶段的调研得知,发现A系列每日的销售量f(x)(单位:千克)与销售价格x(元/千克)近似满足关系式f(x)=a/x-4+10(1-7)2其中4<x<7,a为常数.已知销售价格为6元/千克时,每日可售出A系列15千克.(1)求函数f(x)的解析式;(2)若A系列的成本为4元/千克,试确定销售价格x的值,使该商场每日销售A系列所获得的利润最大.
六、单选题(0题)61.随着互联网的普及,网上购物已经逐渐成为消费时尚,为了解消费者对网上购物的满意情况,某公司随机对4500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如表:根据表中数据,估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率是()A.7/15B.2/5C.11/15D.13/15
参考答案
1.B
2.A
3.Bx是y的算术平方根,因此定义域为B。
4.C
5.A向量的运算.=(l,2)+(3,4)=(4,6).
6.B由题可知,3-x2大于0,所以定义域为(-3,3)
7.D
8.C
9.C直线的两点式方程.点代入验证方程.
10.B因为反函数的图像是关于y=x对称,所以k=2.然后把一式中的x用y的代数式表达,再把x,y互换,代入二式,得到m=-3/2.
11.C
12.D
13.A
14.A等差数列的性质.由S8=4a3知:S8=a1+a2+a3+...+a8=4(a1+a8)=4(a3+a6)=4a3.a6=0,所以a7-a6=d=-2.所以a9=a7+2d=-2-4=-6.
15.A直线与圆的位置关系.圆心(2,-1)到直线y=-4的距离为|-4-(-1)|=3,而圆的半径为3,所以直线与圆相切,
16.C集合的并集.由两集合并集的定义可知,A∪B={1,2,3,4},故选C
17.C
18.D
19.B椭圆的性质.由题意知25-m2=16,解得m2=9,又m>0,所以m=3.
20.D集合的运算.C∪A={c,d}.
21.[2,5]函数值的计算.因为y=2x,y=㏒2x为増函数,所以y=2x+㏒2x在[1,2]上单调递增,故f(x)∈[2,5].
22.{x|x>4或x<-5}方程的根为x=4或x=-5,所以不等式的解集为{x|x>4或x<-5}。
23.1.对数的运算.lg2+lg5==lg(2×5)=lgl0=l.
24.第11项。由题可知,a1=2,q=2,所以an=2n,n=log2an=log22048=11。
25.
26.{x|0<x<1},
27.2
28.100程序框图的运算.初始值n=3,x=4,程序运行过程如下表所示:v=1,i=2,v=1×4+2=6,i=1,v=6×4+l=25,i=0,v=25×4+0=100,i=-1跳出循环,输出v的值为100.
29.
30.{x|0<x<3}
31.
32.
33.
34.
35.
36.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
37.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
38.
39.
40.
41.(1)(2)
42.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)
∴数列为首项b1=32,q=16的等比数列
43.
44.∵∴当△>0时,即,相交当△=0时,即,相切当△<0时,即,相离
45.x2-6x+8>0,∴x>4,x<2(1)(2)联系(1)(2)得不等式组的解集为
46.sinα
47.x-7y+19=0或7x+y-17=0
48.∵△(1)当△>0时,又两个不同交点(2)当A=0时,只有一个交点(3)当△<0时,没有交点
49.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2
50.(1)∵
∴又∵等差数列∴∴(2)
51.
52.
53.
54.
55.
56.C
57.(1)设每吨的成本为w万元,则w=y/x=x/10+90/(x-2)>2-2=4,当且仅当总产量x=30吨时,每吨的成本最低为4万元.(2)设利润为u万元,则w=6x-(x2/10-2x+90)=-x2/10+8x-90=-1/10(x-40)2+70,当总产量x=40吨时,利润最大为70万元.
58.
59.(1)由题意,y与x之间的函数关系式为y=(10+0.5x)(2000-6x)=-3x2+940x+20000(l≤x≤110).(2)由题(-3x2+940x+20000)-(10×2000+340x)=22500;化简得,x2-200x+7500=0;解得x1=50,x2=150(不合题意,舍去);因此,李经
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年信息技术咨询服务合同
- 2024年湖南客运从业资格证救护考试题
- 建筑工地清洁方案
- 2024年修订版公司对公借款合同
- 2024年湖南客运驾驶从业资格考试题库
- 2024年超滤装置项目提案报告模范
- 2024年高性能橡塑密封件项目申请报告模范
- 小学创客教育活动方案
- 城市更新项目拆除合同
- 产品研发创新机制
- 新教材人教版高中英语选择性必修第一册全册教学设计
- 《小学生的自我保护》课件
- 古代辞章领略古代辞章的风华与韵味
- 六年级道德与法治下册-3-学会反思教案
- 岗位风险排查管理制度
- 新媒体视听节目制作 第一章 新媒体时代导演的基本素养
- 2023-2024学年辽宁省沈阳126中八年级(上)期中数学试卷(含解析)
- 25题退役军人事务员岗位常见面试问题含HR问题考察点及参考回答
- 锅炉炉膛有限空间应急预案
- 深基坑工程质量验收标准
- 生产检验记录表
评论
0/150
提交评论