2022-2023学年湖北省黄石市普通高校对口单招数学自考测试卷(含答案)_第1页
2022-2023学年湖北省黄石市普通高校对口单招数学自考测试卷(含答案)_第2页
2022-2023学年湖北省黄石市普通高校对口单招数学自考测试卷(含答案)_第3页
2022-2023学年湖北省黄石市普通高校对口单招数学自考测试卷(含答案)_第4页
2022-2023学年湖北省黄石市普通高校对口单招数学自考测试卷(含答案)_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年湖北省黄石市普通高校对口单招数学自考测试卷(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.在等差数列{an}中,如果a3+a4+a5+a6+a7+a8=30,则数列的前10项的和S10为()A.30B.40C.50D.60

2.已知A是锐角,则2A是A.第一象限角B.第二象限角C.第一或第二象限角D.D小于180°的正角

3.A.偶函数B.奇函数C.既不是奇函数,也不是偶函数D.既是奇函数,也是偶函数

4.已知函数f(x)=x2-x+1,则f(1)的值等于()A.-3B.-1C.1D.2

5.函数f(x)=x2+2x-5,则f(x-1)等于()A.x2-2x-6

B.x2-2x-5

C.x2-6

D.x2-5

6.下列双曲线中,渐近线方程为y=±2x的是()A.x2-y2/4=1

B.x2/4-y2=1

C.x2-y2/2=1

D.x2/2-y2=1

7.若函数f(x)=x2+ax+3在(-∞,1]上单调递减,则实数a的取值范围是()A.(-∞,1]B.[―1,+∞)C.(―∞,-2]D.(-2,+∞)

8.A.3B.8C.1/2D.4

9.下列函数是奇函数且在区间(0,1)内是单调递增的是()A.y=xB.y=lgxC.y=ex

D.y=cosx

10.A.B.C.D.

11.在等差数列中,若a3+a17=10,则S19等于()A.75B.85C.95D.65

12.A=,是AB=的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件

13.函数和在同一直角坐标系内的图像可以是()A.

B.

C.

D.

14.以坐标轴为对称轴,离心率为,半长轴为3的椭圆方程是()A.

B.或

C.

D.或

15.直线x-y=0,被圆x2+y2=1截得的弦长为()A.

B.1

C.4

D.2

16.已知sin2α<0,且cosa>0,则α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限

17.若将函数:y=2sin(2x+π/6)的图象向右平移1/4个周期后,所得图象对应的函数为()A.y=2sin(2x+π/4)

B.y=2sin(2x+π/3)

C.3;=2sin(2x-π/4)

D.3;=2sin(2x-π/3)

18.若a>b.则下列各式正确的是A.-a>-b

B.C.D.

19.若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a取值范围是()A.[―3,一1]B.[―1,3]C.[-3,1]D.(-∞,一3]∪[1,+∞)

20.公比为2的等比数列{an}的各项都是正数,且a3a11=16,则a5=()A.1B.2C.4D.8

二、填空题(10题)21.sin75°·sin375°=_____.

22.

23.

24.设A(2,-4),B(0,4),则线段AB的中点坐标为

25.10lg2=

26.

27.

28.5个人站在一其照相,甲、乙两人间恰好有一个人的排法有_____种.

29.若函数_____.

30.

三、计算题(10题)31.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

32.解不等式4<|1-3x|<7

33.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

34.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

35.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

36.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.

37.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

38.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.

39.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

40.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.

四、简答题(10题)41.某商场经销某种商品,顾客可采用一次性付款或分期付款购买,根据以往资料统计,顾客采用一次性付款的概率是0.6,求3为顾客中至少有1为采用一次性付款的概率。

42.如图,四棱锥P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求证:BC丄平面PAC。(2)求点B到平面PCD的距离。

43.求k为何值时,二次函数的图像与x轴(1)有2个不同的交点(2)只有1个交点(3)没有交点

44.设拋物线y2=4x与直线y=2x+b相交A,B于两点,弦AB长,求b的值

45.已知的值

46.等差数列的前n项和为Sn,已知a10=30,a20=50。(1)求通项公式an。(2)若Sn=242,求n。

47.在1,2,3三个数字组成无重复数字的所有三位数中,随机抽取一个数,求:(1)此三位数是偶数的概率;(2)此三位数中奇数相邻的概率.

48.等比数列{an}的前n项和Sn,已知S1,S3,S2成等差数列(1)求数列{an}的公比q(2)当a1-a3=3时,求Sn

49.已知抛物线y2=4x与直线y=2x+b相交与A,B两点,弦长为,求b的值。

50.已知集合求x,y的值

五、解答题(10题)51.已知a为实数,函数f(x)=(x2+l)(x+a).若f(-1)=0,求函数:y=f(x)在[-3/2,1]上的最大值和最小值。

52.已知圆C的圆心在直线y=x上,半径为5且过点A(4,5),B(1,6)两点.(1)求圆C的方程;(2)过点M(-2,3)的直线l被圆C所截得的线段的长为8,求直线l的方程.

53.给定椭圆C:x2/a2+y2/b2(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆已知椭圆C的离心率为/2,且经过点(0,1).(1)求椭圆C的方程;(2)求直线l:x—y+3=0被椭圆C的伴随圆C1所截得的弦长.

54.已知函数f(x)=ex(ax+b)—x2—4x,曲线:y=f(x)在点(0,f(0))处的切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.

55.已知函数f(x)=x3-3x2-9x+1.(1)求函数f(x)的单调区间.(2)若f(x)-2a+1≥0对Vx∈[-2,4]恒成立,求实数a的取值范围.

56.如图,AB是⊙O的直径,P是⊙O所在平面外一点,PA垂直于⊙O所在的平面,且PA=AB=10,设点C为⊙O上异于A,B的任意一点.(1)求证:BC⊥平面PAC;(2)若AC=6,求三棱锥C-PAB的体积.

57.已知椭圆x2/a2+y2/b2=1(a>b>0)的离心率为,右焦点为(,0),斜率为1的直线L与椭圆G交于A,B两点,以AB为底边作等腰三角形,顶点为P(-3,2).(1)求椭圆G的方程;(2)求△PAB的面积.

58.如图,ABCD-A1B1C1D1为长方体.(1)求证:B1D1//平面BC1D;(2)若BC=CC1,,求直线BC1与平面ABCD所成角的大小.

59.已知等差数列{an}的前72项和为Sn,a5=8,S3=6.(1)求数列{an}的通项公式;(2)若数列{an}的前k项和Sk=72,求k的值.

60.

六、单选题(0题)61.过点A(1,0),B(0,1)直线方程为()A.x+y-1=0B.x-y-1=0C.x+y+1=0D.x-y+1=0

参考答案

1.C

2.D

3.A

4.C函数值的计算f(1)=1-1+1=1.

5.Cf(x-1)=(x-1)2+2(x-1)-5=x2-2x+1+2x-2-5=x2-6,故选C。

6.A双曲线的渐近线方程.由双曲线渐近线方程的求法知,双曲线x2-y2/4=1的渐近线方程为y=±2x

7.C二次函数图像的性质.根据二次函数图象的对称性有-a/2≥1,得a≤-2.

8.A

9.A由奇函数定义已知,y=x既是奇函数也单调递增。

10.B

11.C

12.AA是空集可以得到A交B为空集,但是反之不成立,因此时充分条件。

13.D

14.B由题意可知,焦点在x轴或y轴上,所以标准方程有两个,而a=3,c/a=1/3,所以c=1,b2=8,因此答案为B。

15.D直线与圆相交的性质.直线x-y=0过圆心(0,0),故该直线被圆x2+y2=1所截弦长为圆的直径的长度2.

16.D三角函数值的符号∵sin2α=2sinα.cosα<0,又cosα>0,∴sinα<0,∴α的终边在第四象限,

17.D三角函数图像性质.函数y=2sin(2x+π/6)的周期为π,将函数:y=2sin(2x+π/6)的图象向右平移1/4个周期即π/4个单位,所得函数为y=2sin[2(x-π/4)+π/6]=2sin(2x-π/3)

18.C

19.C直线与圆的公共点.圆(x-a)2+y2=2的圆心C(a,0)到x-y+1=0

20.A

21.

22.

23.a<c<b

24.(1,0)由题可知,线段AB的中点坐标为x=(2+0)/2=1,y=(-4+4)/2=0。

25.lg102410lg2=lg1024

26.10函数值的计算.由=3,解得a=10.

27.-1

28.36,

29.1,

30.(-∞,-2)∪(4,+∞)

31.

32.

33.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

34.

35.

36.

37.

38.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4

39.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

40.

41.

42.证明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC则BC丄平面PAC(2)设点B到平面PCD的距离为hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1则△ADC为等边三角形,且AC=1PA=

PD=PC=2

43.∵△(1)当△>0时,又两个不同交点(2)当A=0时,只有一个交点(3)当△<0时,没有交点

44.由已知得整理得(2x+m)2=4x即∴再根据两点间距离公式得

45.

∴∴则

46.

47.1,2,3三个数字组成无重复数字的所有三位数共有(1)其中偶数有,故所求概率为(2)其中奇数相邻的三位数有个故所求概率为

48.

49.

50.

51.

52.(1)由题意,设圆心坐标为(a,a),则(a,-1)2+(a-6)2=(a-4)2+(a-5)2=25,a=1;所以圆C的方程(x-1)2+(y-1)2=25.

53.

54.

55.

56.(1)∵PA垂直于⊙O所在的平面,BC包含于⊙O所在的平面,∴PA⊥BC,又∵AB为⊙O的直径,C为⊙O上异于A、B的-点,AC⊥BC,且PA∩AC=A,∴BC⊥平面PAC.(2)由(1)知△ABC为直角三角形且∠ACB=90°,又AC=6,AB=10,∴又∵PA=10,PA⊥AC,∴S△PAC=1/2PA.AC=1/2×10×6=30.∴VC-PA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论