2022-2023学年四川省南充市普通高校对口单招数学自考预测试题(含答案)_第1页
2022-2023学年四川省南充市普通高校对口单招数学自考预测试题(含答案)_第2页
2022-2023学年四川省南充市普通高校对口单招数学自考预测试题(含答案)_第3页
2022-2023学年四川省南充市普通高校对口单招数学自考预测试题(含答案)_第4页
2022-2023学年四川省南充市普通高校对口单招数学自考预测试题(含答案)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年四川省南充市普通高校对口单招数学自考预测试题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.椭圆的中心在原点,焦距为4,一条准线为x=-4,则该椭圆的方程为()A.x2/16+y2/12=1

B.x2/12+y2/8=1

C.x2/8+y2/4=1

D.x2/12+y2/4=1

2.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}

3.若函数y=√1-X,则其定义域为A.(-1,+∞)B.[1,+∞]C.(-∞,1]D.(-∞,+∞)

4.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4B.5C.6D.7

5.若向量A.(4,6)B.(-4,-6)C.(-2,-2)D.(2,2)

6.函数A.1B.2C.3D.4

7.己知向量a=(3,-2),b=(-1,1),则3a+2b

等于()A.(-7,4)B.(7,4)C.(-7,-4)D.(7,-4)

8.己知向量a

=(2,1),b

=(-1,2),则a,b之间的位置关系为()A.平行B.不平行也不垂直C.垂直D.以上都不对

9.不等式4-x2<0的解集为()A.(2,+∞)B.(-∞,2)C.(-2,2)D.(―∞,一2)∪(2,+∞)

10.A.B.(2,-1)

C.D.

11.在ABC中,C=45°,则(1-tanA)(1-tanB)=()A.1B.-1C.2D.-2

12.设集合,,则()A.A,B的都是有限集B.A,B的都是无限集C.A是有限集,B是无限集D.B是有限集,A是无限集

13.已知双曲线x2/a2-y2/b2=1的实轴长为2,离心率为2,则双曲线C的焦点坐标是()A.(±1,0)B.(±2,0)C.(0,±2)D.(±1,0)

14.直线:y+4=0与圆(x-2)2+(y+l)2=9的位置关系是()

A.相切B.相交且直线不经过圆心C.相离D.相交且直线经过圆心

15.在△ABC中,角A,B,C所对边为a,b,c,“A>B”是a>b的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件

16.5人排成一排,甲必须在乙之后的排法是()A.120B.60C.24D.12

17.AB>0是a>0且b>0的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件

18.5人站成一排,甲、乙两人必须站两端的排法种数是()A.6B.12C.24D.120

19.已知集合,则等于()A.

B.

C.

D.

20.A.(6,7)B.(2,-1)C.(-2,1)D.(7,6)

二、填空题(10题)21.已知数列{an}是各项都是正数的等比数列,其中a2=2,a4=8,则数列{an}的前n项和Sn=______.

22.秦九昭是我国南宋时期的数学家,他在所著的《数学九章》中提出的多项式求值的秦九昭算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九昭算法求某多项式值的一个实例,若输入n,x的值分别为3,4,则输出v的值为________.

23.若=_____.

24.函数f(x)=-X3+mx2+1(m≠0)在(0,2)内的极大值为最大值,则m的取值范围是________________.

25.

26.

27.圆x2+y2-4x-6y+4=0的半径是_____.

28.

29.不等式(x-4)(x+5)>0的解集是

30.

三、计算题(10题)31.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.

32.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.

33.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

34.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

35.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

36.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.

37.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

38.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.

39.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

40.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

四、简答题(10题)41.拋物线的顶点在原点,焦点为椭圆的左焦点,过点M(-1,-1)引抛物线的弦使M为弦的中点,求弦长

42.某中学试验班有同学50名,其中女生30人,男生20人,现在从中选取2人取参加校际活动,求(1)选出的2人都是女生的概率。(2)选出的2人是1男1女的概率。

43.己知边长为a的正方形ABCD,PA丄底面ABCD,PA=a,求证,PC丄BD

44.已知双曲线C的方程为,离心率,顶点到渐近线的距离为,求双曲线C的方程

45.已知函数:,求x的取值范围。

46.已知椭圆和直线,求当m取何值时,椭圆与直线分别相交、相切、相离。

47.据调查,某类产品一个月被投诉的次数为0,1,2的概率分别是0.4,0.5,0.1,求该产品一个月内被投诉不超过1次的概率

48.设等差数列的前n项数和为Sn,已知的通项公式及它的前n项和Tn.

49.已知的值

50.以点(0,3)为顶点,以y轴为对称轴的拋物线的准线与双曲线3x2-y2+12=0的一条准线重合,求抛物线的方程。

五、解答题(10题)51.

52.已知函数f(x)=x2-2ax+a,(1)当a=2时,求函数f(x)在[0,3]上的值域;(2)若a<0,求使函数f(x)=x2-2ax+a的定义域为[―1,1],值域为[一2,2]的a的值.

53.

54.

55.如图,在正方体ABCD-A1B1C1D1中,E,F分别为DD1,CC1的中点.求证:(1)AC⊥BD1;(2)AE//平面BFD1.

56.给定椭圆C:x2/a2+y2/b2(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆已知椭圆C的离心率为/2,且经过点(0,1).(1)求椭圆C的方程;(2)求直线l:x—y+3=0被椭圆C的伴随圆C1所截得的弦长.

57.设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(1)求a,b的值;(2)若对于任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.</c

58.

59.

60.如图,在四棱锥P—ABCD中,平面PAD丄平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.连接BD求证:(1)直线EF//平面PCD;(2)平面BEF丄平面PAD.

六、单选题(0题)61.A.

B.

C.

D.U

参考答案

1.C椭圆的标准方程.椭圆的焦距为4,所以2c=4,c=2因为准线为x=-4,所以椭圆的焦点在x轴上,且-a2/c=-4,所以a2=4c=8,b2=a2-c2=8-4=4,所以椭圆的方程为x2/8+y2/4+=1

2.B集合的运算.由A={1,3,5,7},B={x|2≤x≤5},得A∩B={3,5}

3.C

4.C分层抽样方法.四类食品的比例为4:1:3:2,则抽取的植物油类的数量为20×1/10=2,抽取的果蔬类的数量为20×2/10=4,二者之和为6,

5.A向量的运算.=(l,2)+(3,4)=(4,6).

6.B

7.D

8.C

9.D不等式的计算.4-x2<0,x2-4>0即(x-2)(x+2)>0,x>2或x<-2.

10.A

11.C

12.B由于等腰三角形和(0,1)之间的实数均有无限个,因此A,B均为无限集。

13.B双曲线的定义.∵2a=2,∴a=1,又c/a=2,∴.c=2,∴双曲线C的焦点坐标是(±2,0).

14.A直线与圆的位置关系.圆心(2,-1)到直线y=-4的距离为|-4-(-1)|=3,而圆的半径为3,所以直线与圆相切,

15.C正弦定理的应用,充要条件的判断.大边对大角,大角也就对应大边.

16.C

17.Ba大于0且b大于0可得到到ab大于0,但是反之不成立,所以是必要条件。

18.B

19.B由函数的换算性质可知,f-1(x)=-1/x.

20.A

21.2n-1

22.100程序框图的运算.初始值n=3,x=4,程序运行过程如下表所示:v=1,i=2,v=1×4+2=6,i=1,v=6×4+l=25,i=0,v=25×4+0=100,i=-1跳出循环,输出v的值为100.

23.

24.(0,3).利用导数求函数的极值,最值.f(x)=-3x2+2mx=x(-3x+2m).令f(x)=0,得x=0或x=2m/3因为x∈(0,2),所以0<2m/3<2,0<m<3.答案:(0,3).

25.(1,2)

26.60m

27.3,

28.

29.{x|x>4或x<-5}方程的根为x=4或x=-5,所以不等式的解集为{x|x>4或x<-5}。

30.56

31.

32.

33.

34.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

35.

36.

37.

38.

39.

40.

41.

42.(1)2人都是女生的概率P=C(2,30)/C(2,50)=30*29/(50*49)=0.35510

(2)2人都是男生的概率P=C(2,20)/C(2,50)=20*19/(50*49)=0.15510

选出的一男一女的概率P=C(1,20)*C(1,30)/C(2,50)=20*30/((50*49)/2)=0.4897

43.证明:连接ACPA⊥平面ABCD,PC是斜线,BD⊥ACPC⊥BD(三垂线定理)

44.

45.

X>4

46.∵∴当△>0时,即,相交当△=0时,即,相切当△<0时,即,相离

47.设事件A表示“一个月内被投诉的次数为0”,事件B表示“一个月内被投诉的次数为1”∴P(A+B)=P(A)+P(B)=0.4+0.5=0.9

48.(1)∵

∴又∵等差数列∴∴(2)

49.

∴∴则

50.由题意可设所求抛物线的方程为准线方程为则y=-3代入得:p=12所求抛物线方程为x2=24(y-3)

51.

52.

53.

54.

55.(1)连接BD,由D1D⊥平面ABCD→D1D⊥AC又BD⊥AC,BD∩D1D=D,BD1,BD平面BDD1→AC⊥平面BDD1,又因为BD1包含于平面BDD1→AC⊥BD1.(2)连接EF,因为E,F分别为DD1,CC1的中点,所以EF//DC,且EF=DC,又DC//AB,且EF=AB所以四边形EFBA是平行四边形,所以AE//BF,又因为AE不包含平面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论