江苏省徐州市锥宁县2022-2023学年数学九年级第一学期期末学业水平测试模拟试题含解析_第1页
江苏省徐州市锥宁县2022-2023学年数学九年级第一学期期末学业水平测试模拟试题含解析_第2页
江苏省徐州市锥宁县2022-2023学年数学九年级第一学期期末学业水平测试模拟试题含解析_第3页
江苏省徐州市锥宁县2022-2023学年数学九年级第一学期期末学业水平测试模拟试题含解析_第4页
江苏省徐州市锥宁县2022-2023学年数学九年级第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,已知若的面积为,则的面积为()A. B. C. D.2.在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tanB的值是()A. B.3 C. D.23.如图,抛物线y=ax2+bx+c的对称轴为x=﹣1,且过点(,0),有下列结论:①abc>0;②a﹣2b+4c>0;③25a﹣10b+4c=0;④3b+2c>0;其中所有正确的结论是()A.①③ B.①③④ C.①②③ D.①②③④4.方程x=x(x-1)的根是()A.x=0 B.x=2 C.x1=0,x2=1 D.x1=0,x2=25.已知关于x的一元二次方程有一个根为,则a的值为()A.0 B. C.1 D.6.已知是的反比例函数,下表给出了与的一些值,表中“▲”处的数为()▲A. B. C. D.7.如图,在一块斜边长60cm的直角三角形木板()上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若CD:CB=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.202.5cm2 B.320cm2 C.400cm2 D.405cm28.若反比例函数的图象在每一条曲线上都随的增大而减小,则的取值范围是()A. B. C. D.9.把抛物线先向左平移1个单位,再向上平移个单位后,得抛物线,则的值是()A.-2 B.2 C.8 D.1410.如图,在中,,且DE分别交AB,AC于点D,E,若,则△和△的面积之比等于()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在中,点D、E分别在AB、AC边上,,,,则__________.12.不透明布袋里有5个红球,4个白球,往布袋里再放入x个红球,y个白球,若从布袋里摸出白球的概率为,则y与x之间的关系式是_____.13.已知一组数据:4,2,5,0,1.这组数据的中位数是_____.14.一元二次方程x2﹣3x+2=0的两根为x1,x2,则x1+x2﹣x1x2=______.15.如图,在平面直角坐标系中,直线l∥x轴,且直线l分别与反比例函数y=(x>0)和y=﹣(x<0)的图象交于点P、Q,连结PO、QO,则△POQ的面积为.16.如图,Rt△ABC中,∠ACB=90°,AC=BC=4,D为线段AC上一动点,连接BD,过点C作CH⊥BD于H,连接AH,则AH的最小值为_____.17.从地面垂直向上抛出一小球,小球的高度h(米)与小球运动时间t(秒)之间的函数关系式是h=12t﹣6t2,则小球运动到的最大高度为________米;18.若二次函数的图象经过点(3,6),则三、解答题(共66分)19.(10分)为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A级:非常满意;B级:满意;C级:基本满意;D级:不满意),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:(1)本次抽样调查测试的建档立卡贫困户的总户数______.(2)图1中,∠α的度数是______,并把图2条形统计图补充完整.(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的人数约为多少户?(4)调查人员想从5户建档立卡贫困户(分别记为)中随机选取两户,调查他们对精准扶贫政策落实的满意度,请用列表或画树状图的方法求出选中贫困户的概率.20.(6分)如图,图中每个小方格都是边长为1个单位长度的正方形,在方格纸中的位置如图所示.(1)请在图中建立平面直角坐标系,使得,两点的坐标分别为,,并写出点的坐标;(2)在图中作出绕坐标原点旋转后的,并写出,,的坐标.21.(6分)李明准备进行如下操作实验,把一根长40cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48cm2,你认为他的说法正确吗?请说明理由.22.(8分)矩形的长和宽分别是4cm,3cm,如果将长和宽都增加xcm,那么面积增加ycm2(1)求y与x之间的关系式.(2)求当边长增加多少时,面积增加8cm2.23.(8分)在平面直角坐标系xOy中,一次函数y=2x+b的图象与x轴的交点为A(2,0),与y轴的交点为B,直线AB与反比例函数y=的图象交于点C(﹣1,m).(1)求一次函数和反比例函数的表达式;(2)直接写出关于x的不等式2x+b>的解集;(3)点P是这个反比例函数图象上的点,过点P作PM⊥x轴,垂足为点M,连接OP,BM,当S△ABM=2S△OMP时,求点P的坐标.24.(8分)教材习题第3题变式如图,AD是△ABC的角平分线,过点D分别作AC和AB的平行线,交AB于点E,交AC于点F.求证:四边形AEDF是菱形.25.(10分)如图,中,,,为内部一点,且.(1)求证:;(2)求证:;(3)若点到三角形的边,,的距离分别为,,,求证.26.(10分)如图,在矩形中,是上一点,连接的垂直平分线分别交于点,连接.(1)求证:四边形是菱形;(2)若为的中点,连接,求的长.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据相似三角形的性质得出,代入求出即可.【详解】解:∵△ADE∽△ABC,AD:AB=1:3,∴,∵△ABC的面积为9,∴,∴S△ADE=1,故选:A.【点睛】本题考查了相似三角形的性质定理,能熟记相似三角形的面积比等于相似比的平方是解此题的关键.2、D【分析】先求出AC,再根据正切的定义求解即可.【详解】设BC=x,则AB=3x,由勾股定理得,AC=,tanB===,故选D.考点:1.锐角三角函数的定义;2.勾股定理.3、C【分析】①根据抛物线的开口方向、对称轴、与y轴的交点即可得结论;②根据抛物线与x轴的交点坐标即可得结论;③根据对称轴和与x轴的交点得另一个交点坐标,把另一个交点坐标代入抛物线解析式即可得结论;④根据点(,1)和对称轴方程即可得结论.【详解】解:①观察图象可知:a<1,b<1,c>1,∴abc>1,所以①正确;②当x=时,y=1,即a+b+c=1,∴a+2b+4c=1,∴a+4c=﹣2b,∴a﹣2b+4c=﹣4b>1,所以②正确;③因为对称轴x=﹣1,抛物线与x轴的交点(,1),所以与x轴的另一个交点为(﹣,1),当x=﹣时,a﹣b+c=1,∴25a﹣11b+4c=1.所以③正确;④当x=时,a+2b+4c=1,又对称轴:﹣=﹣1,∴b=2a,a=b,b+2b+4c=1,∴b=﹣c.∴3b+2c=﹣c+2c=﹣c<1,∴3b+2c<1.所以④错误.故选:C.【点睛】本题考查了利用抛物线判断式子正负,正确读懂抛物线的信息,判断式子正负是解题的关键4、D【详解】解:先移项,再把方程左边分解得到x(x﹣1﹣1)=0,原方程化为x=0或x﹣1﹣1=0,解得:x1=0;x2=2故选D.【点睛】本题考查因式分解法解一元二次方程,掌握因式分解的技巧进行计算是解题关键.5、D【分析】根据一元二次方程的定义,再将代入原式,即可得到答案.【详解】解:∵关于x的一元二次方程有一个根为,∴,,则a的值为:.故选D.【点睛】本题考查一元二次方程,解题的关键是熟练掌握一元二次方程的定义.6、D【分析】设出反比例函数解析式,把代入可求得反比例函数的比例系数,当时计算求得表格中未知的值.【详解】是的反比例函数,,,,,当时,,故选:D.【点睛】本题考查了用待定系数法求反比例函数解析式;点在反比例函数图象上,点的横纵坐标适合函数解析式,在同一函数图象上的点的横纵坐标的积相等.7、C【分析】先根据正方形的性质、相似三角形的判定与性质可得,设,从而可得,再在中,利用勾股定理可求出x的值,然后根据三角形的面积公式、正方形的面积公式计算即可.【详解】∵四边形CDEF为正方形,∴,,∴,,∵,,设,则,∴,在中,,即,解得或(不符题意,舍去),,则剩余部分的面积为,故选:C.【点睛】本题考查了正方形的性质、相似三角形的判定与性质、勾股定理等知识点,利用正方形的性质找出两个相似三角形是解题关键.8、A【分析】根据反比例函数的图象和性质,当反比例函数y的图象的每一条曲线上,y都随x的增大而减小,可知,k﹣1>0,进而求出k>1.【详解】∵反比例函数y的图象的每一条曲线上,y都随x的增大而减小,∴k﹣1>0,∴k>1.故选:A.【点睛】本题考查了反比例函数的图象和性质,对于反比例函数y,当k>0时,在每个象限内,y随x的增大而减小;当k<0时,在每个象限内,y随x的增大而增大.9、B【分析】将改写成顶点式,然后按照题意将进行平移,写出其平移后的解析式,从而求解.【详解】解:由题意可知抛物线先向左平移1个单位,再向上平移个单位∴∴n=2故选:B【点睛】本题考查了二次函数图象与几何变换,利用顶点坐标的变化确定函数图象的变化可以使求解更加简便.10、B【解析】由DE∥BC,利用“两直线平行,同位角相等”可得出∠ADE=∠ABC,∠AED=∠ACB,进而可得出△ADE∽△ABC,再利用相似三角形的面积比等于相似比的平方即可求出结论.【详解】∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴△ADE∽△ABC,∴.故选B.【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.二、填空题(每小题3分,共24分)11、【分析】由,,即可求得的长,又由,根据平行线分线段成比例定理,可得,则可求得答案.【详解】解:,,,,,.故答案为:.【点睛】此题考查了相似三角形的判定和性质,此题比较简单,注意掌握比例线段的对应关系是解此题的关键.12、x﹣2y=1.【分析】根据从布袋里摸出白球的概率为,列出=,整理即可得.【详解】根据题意得=,整理,得:x﹣2y=1,故答案为:x﹣2y=1.【点睛】本题考查概率公式的应用,熟练掌握概率公式建立方程是解题的关键.13、1【分析】要求中位数,按从小到大的顺序排列后,找出最中间的一个数(或最中间的两个数的平均数)即可.【详解】解:从小到大排列此数据为:0,2,1,4,5,第1位是1,则这组数据的中位数是1.故答案为:1.【点睛】本题考查了中位数的定义,解决本题的关键是熟练掌握中位数的概念及中位数的确定方法.14、1【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x1+x2=3,x1x2=2,

所以x1+x2-x1x2=3-2=1.

故答案为:1.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=.15、1【分析】根据反比例函数比例系数k的几何意义得到S△OQM=4,S△OPM=3,然后利用S△POQ=S△OQM+S△OPM进行计算.【详解】解:如图,∵直线l∥x轴,∴S△OQM=×|﹣8|=4,S△OPM=×|6|=3,∴S△POQ=S△OQM+S△OPM=1.故答案为1.考点:反比例函数系数k的几何意义.16、2﹣2【分析】取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=BC=2,根据勾股定理可求AG=2,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,可求AH的最小值.【详解】解:如图,取BC中点G,连接HG,AG,∵CH⊥DB,点G是BC中点∴HG=CG=BG=BC=2,在Rt△ACG中,AG==2在△AHG中,AH≥AG﹣HG,即当点H在线段AG上时,AH最小值为2﹣2,故答案为:2﹣2【点睛】本题考查了动点问题,解决本题的关键是熟练掌握直角三角形中勾股定理关系式.17、6【分析】现将函数解析式配方得,即可得到答案.【详解】,∴当t=1时,h有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开口方向确定最值.18、.【详解】试题分析:根据点在抛物线上点的坐标满足方程的关系,由二次函数的图象经过点(3,6)得:.三、解答题(共66分)19、(1)60;(2)54°;(3)1500户;(4)见解析,.【分析】(1)用B级人数除以B级所占百分比即可得答案;(2)用A级人数除以总人数可求出A级所占百分比,乘以360°即可得∠α的度数,总人数减去A级、B级、D级的人数即可得C级的人数,补全条形统计图即可;(3)用10000乘以A级人数所占百分比即可得答案;(4)画出树状图,得出所有可能出现的结果及选中的结果,根据概率公式即可得答案.【详解】(1)21÷35%=60(户)故答案为60(2)9÷60×360°=54°,C级户数为:60-9-21-9=21(户),补全条形统计图如所示:故答案为54°(3)(户)(4)由题可列如下树状图:由树状图可知,所有可能出现的结果共有20种,选中的结果有8种∴P(选中)=.【点睛】本题考查了条形统计图、扇形统计图及概率,概率=所求结果数与所有可能出现的结果数的比值,正确得出统计图中的信息,熟练掌握概率公式是解题关键.20、(1)图形见解析,点坐标;(2)作图见解析,,,的坐标分别是【分析】(1)根据已知点的坐标,画出坐标系,由坐标系确定C点坐标;(2)由关于原点中心对称性画,可确定写出,,的坐标.【详解】解:(1),把向左平移两个单位长度,再向上平移一个单位长度,得到原点O,建立如下图的直角坐标系,C(3,-3);(2)分别找到的对称点,,,顺次连接,,,即为所求,如图所示,(-2,1),(-1,4),(-3,3).【点睛】本题考查了作图-旋转变换,熟练掌握网格结构,准确找出对应点的位置是解题的关键.21、(1)李明应该把铁丝剪成12cm和28cm的两段;(2)李明的说法正确,理由见解析.【解析】试题分析:(1)设剪成的较短的这段为xcm,较长的这段就为(40﹣x)cm.就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于58cm2建立方程求出其解即可;(2)设剪成的较短的这段为mcm,较长的这段就为(40﹣m)cm.就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于48cm2建立方程,如果方程有解就说明李明的说法错误,否则正确.试题解析:设其中一段的长度为cm,两个正方形面积之和为cm2,则,(其中),当时,,解这个方程,得,,∴应将之剪成12cm和28cm的两段;(2)两正方形面积之和为48时,,,∵,∴该方程无实数解,也就是不可能使得两正方形面积之和为48cm2,李明的说法正确.考点:1.一元二次方程的应用;2.几何图形问题.22、(1)y=(4+x)(3+x)-12=x2+7x;(2)边长增加1cm时,面积增加8cm2.【分析】(1)根据题意,借助于矩形面积,直接解答;(2)在(1)中,把y=8代入即可解答.【详解】解:(1)由题意可得:(4+x)(3+x)-3×4=y,化简得:y=x2+7x;(2)把y=8代入解析式y=x2+7x中得:x2+7x-8=0,解之得:x1=1,x2=-8(舍去).∴当边长增加1cm时,面积增加8cm223、(1)反比例函数的解析式为y=;(2)不﹣1<x<0或x>3;(3)点P的坐标为(﹣1,﹣6)或(5,).【分析】(1)将点A,点C坐标代入一次函数解析式y=2x+b,可得b=-4,m=-6,将点C坐标代入反比例函数解析式,可求k的值,即可得一次函数和反比例函数的表达式;

(2)求得直线与反比例函数的交点坐标,然后根据图象求得即可;

(3)由S△ABM=2S△OMP=6,可求AM的值,由点A坐标可求点M坐标,即可得点P坐标.【详解】解:(1)将A(2,0)代入直线y=2x+b中,得2×2+b=0∴b=﹣4,∴一次函数的解析式为y=2x﹣4将C(﹣1,m)代入直线y=2x﹣4中,得2×(﹣1)﹣4=m∴m=﹣6∴C(﹣1,﹣6)将C(﹣1,﹣6)代入y=,得﹣6=,解得k=6∴反比例函数的解析式为y=;(2)解得或,∴直线AB与反比例函数y=的图象交于点C(﹣1,﹣6)和D(3,2).如图,由图象可知:不等式2x+b>的解集是﹣1<x<0或x>3;(3)∵S△ABM=2S△OMP,∴×AM×OB=6,∴×AM×4=6∴AM=3,且点A坐标(2,0)∴点M坐标(﹣1,0)或(5,0)∴点P的坐标为(﹣1,﹣6)或(5,).【点睛】本题考查反比例函数和一次函数的交点问题,根据待定系数法把A、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论