




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省郑州市第七十六中学2022年高二数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有()A.1440种 B.960种
C.720种 D.480种参考答案:B2.已知条件p:|x﹣1|<2,条件q:x2﹣5x﹣6<0,则p是q的()A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分又不必要条件参考答案:B【考点】充要条件.【分析】通过解不等式,先化简条件p,q,再判断出条件p,q中的数构成的集合间的关系,判断出p是q的什么条件.【解答】解:条件p:|x﹣1|<2即﹣1<x<3,条件q:x2﹣5x﹣6<0即﹣1<x<6,∵{x|﹣1<x<6}?{x|﹣1<x<3},∴p是q的充分不必要条件.故选B3.方程中的,且互不相同.在所有这些方程所表示的曲线中,不同的抛物线共有(
)A.150条
B.118条
C.100条
D.62条参考答案:B略4.现有高一年级的学生名,高二年级的学生名,高三年级的学生名,从中任选人参加某项活动,则不同选法种数为(
)
(A)60
(B)12
(C)5
(D)5参考答案:B略5.(5分)(2010?辽宁)两个实习生每人加工一个零件.加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为()A.B.C.D.参考答案:B【分析】根据题意,分析可得,这两个零件中恰有一个一等品包含仅第一个实习生加工一等品与仅第二个实习生加工一等品两种互斥的事件,而两个零件是否加工为一等品相互独立,进而由互斥事件与独立事件的概率计算可得答案.【解答】解:记两个零件中恰好有一个一等品的事件为A,即仅第一个实习生加工一等品(A1)与仅第二个实习生加工一等品(A2)两种情况,则P(A)=P(A1)+P(A2)=,故选B.【点评】本题考查了相互独立事件同时发生的概率与互斥事件的概率加法公式,解题前,注意区分事件之间的相互关系(对立,互斥,相互独立).6.如右图所示,这个程序输出的值为(
).
.
.
.参考答案:A略7.在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.钝角三角形 B.直角三角形 C.锐角三角形 D.不能确定参考答案:A【考点】三角形的形状判断.【分析】利用正弦定理将sin2A+sin2B<sin2C,转化为a2+b2<c2,再结合余弦定理作出判断即可.【解答】解:∵在△ABC中,sin2A+sin2B<sin2C,由正弦定理===2R得,a2+b2<c2,又由余弦定理得:cosC=<0,0<C<π,∴<C<π.故△ABC为钝角三角形.故选A.8.抛物线的焦点坐标为A.
B.
C.
D.参考答案:C9.在3和9之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个正数之和为
(
)
A.
B.
C.
D.参考答案:D10.设函数是奇函数的导函数,当时,,则使得成立的x的取值范围是()A.(-2,0)∪(0,2) B.(-∞,-2)∪(2,+∞)C.(-2,0)∪(2,+∞) D.(-∞,-2)∪(0,2)参考答案:D【分析】构造函数,可得在上为减函数,可得在区间和上,都有,结合函数的奇偶性可得在区间和上,都有,原不等式等价于或,从而可得的值范围.【详解】根据题意,设,其导数,又由当时,,则有,即函数在上为减函数,又由,则在区间上,,又由,则,在区间上,,又由,则,则在和上,,又由为奇函数,则在区间和上,都有,或,解可得或,则的取值范围是,故选D.【点睛】联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.二、填空题:本大题共7小题,每小题4分,共28分11.若变量x、y满足约束条件,则z=x﹣2y的最大值为.参考答案:3【考点】简单线性规划.【分析】先画出满足约束条件的可行域,并求出各角点的坐标,然后代入目标函数,即可求出目标函数z=x﹣2y的最大值.【解答】解:满足约束条件的可行域如下图所示:由图可知,当x=1,y=﹣1时,z=x﹣2y取最大值3故答案为:312.若,则“”是“方程表示双曲线”的_____
____条件。参考答案:充分不必要条件13.等比数列{an}的前n项和为Sn,已知S1,2S2,3S3成等差数列,则{an}的公比为
.参考答案:【考点】等比数列的性质.【分析】先根据等差中项可知4S2=S1+3S3,利用等比数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.【解答】解:∵等比数列{an}的前n项和为Sn,已知S1,2S2,3S3成等差数列,∴an=a1qn﹣1,又4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解.故答案为14.复数满足,则的虚部是
.参考答案:115.设,其中。若对一切恒成立,则①;②;③既不是奇函\o"欢迎登陆全品高考网!"数也不是偶函数;④的单调递增区间是;⑤存在经过点的直线与函\o"欢迎登陆全品高考网!"数图像不相交.以上结论正确的是________(写出所有正确结论的编号).参考答案:①③_略16.若点P(-3,y)是角终边上一点,且sin=,则y=_______.参考答案:略17.过点的直线与抛物线交于两点,记线段的中点为,过点和这个抛物线的焦点的直线为,的斜率为,则直线的斜率与直线的斜率之比可表示为的函数
__.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知,i是虚数单位,,.(1)如果展开式中的倒数第3项的系数是-180,求n的值;(2)对(1)中的n,求展开式中系数为正实数的项.参考答案:(1)(2),,.【分析】(1)由题意得到关于n的方程,解方程可得n的值;(2)结合(1)中求得的n的值,得到展开式的通项公式,然后整理计算可得展开式中系数为正实数的项.【详解】(1)由已知,得,即,所以,又,解得.(2)展开式的通项为,因为系数为正实数,且,所以.代入通项公式可得所求的项为,,.【点睛】本题主要考查二项式展开式的通项公式及其应用,分类讨论的数学思想,复数的运算法则等知识,意在考查学生的转化能力和计算求解能力.19.如图:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,PD与平面ABCD所成角是30°,点F是PB的中点,点E在边BC上移动.(Ⅰ)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;(2)证明:无论点E在边BC的何处,都有PE⊥AF;(3)当BE等于何值时,二面角P-DE-A的大小为45°.参考答案:得.
………12分
略20.在平面直角坐标系xoy中,已知点A(2,0),点B(0,2),点C(﹣,﹣1).(1)求经过A,B,C三点的圆P的方程;(2)若直线l经过点(1,1)且被圆P截得的弦长为2,求直线l的方程.参考答案:解:(1)设圆的一般方程为x2+y2+Dx+Ey+F=0,∵圆经过三个点A(2,0),点B(0,2),点C(﹣,﹣1).∴,解得D=0,E=0,F=﹣4,即圆P的方程为x2+y2=4.(2)当直线斜率k不存在时,直线方程为x=1,代入x2+y2=4.得y1=或y2=﹣,故弦长|y1﹣y2|=2,设点C到直线M得y=,满足条件.当直线斜率k存在时,设所求的方程为y﹣1=k(x﹣1),即kx﹣y﹣k+1=0,由已知弦心距d==1,∴,解得k=0,即直线方程为y=1,综上所求的直线方程为x=1或y=1.考点:直线和圆的方程的应用.专题:直线与圆.分析:(1)设圆的一般方程,利用待定系数法即可求圆C的方程;(2)根据直线和圆相交的弦长公式,以及结合点到直线的距离公式即可得到结论.解答:解:(1)设圆的一般方程为x2+y2+Dx+Ey+F=0,∵圆经过三个点A(2,0),点B(0,2),点C(﹣,﹣1).∴,解得D=0,E=0,F=﹣4,即圆P的方程为x2+y2=4.(2)当直线斜率k不存在时,直线方程为x=1,代入x2+y2=4.得y1=或y2=﹣,故弦长|y1﹣y2|=2,设点C到直线M得y=,满足条件.当直线斜率k存在时,设所求的方程为y﹣1=k(x﹣1),即kx﹣y﹣k+1=0,由已知弦心距d==1,∴,解得k=0,即直线方程为y=1,综上所求的直线方程为x=1或y=1.点评:本题主要考查直线和圆的方程的应用,利用待定系数法结合点到直线的距离是解决本题的关键.21.如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(Ⅰ)求证:DE∥平面BCP;(Ⅱ)求证:四边形DEFG为矩形;(Ⅲ)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.参考答案:考点:直线与平面平行的判定;空间中直线与直线之间的位置关系.专题:空间位置关系与距离;立体几何.分析:(Ⅰ)根据两个点是两条边的中点,得到这条线是两条边的中位线,得到这条线平行于PC,根据线面平行的判定定理,得到线面平行.(Ⅱ)根据四个点是四条边的中点,得到中位线,根据中位线定理得到四边形是一个平行四边形,根据两条对角线垂直,得到平行四边形是一个矩形.(Ⅲ)做出辅助线,证明存在点Q到四面体PABC六条棱的中点的距离相等,根据第二问证出的四边形是矩形,根据矩形的两条对角线互相平分,又可以证出另一个矩形,得到结论.解答:证明:(Ⅰ)∵D,E分别为AP,AC的中点,∴DE∥PC,∵DE?平面BCP,∴DE∥平面BCP.
(Ⅱ)∵D,E,F,G分别为AP,AC,BC,PB的中点,∴DE∥PC∥FG,DG∥AB∥EF∴四边形DEFG为平行四边形,∵PC⊥AB,∴DE⊥DG,∴四边形DEFG为矩形.
(Ⅲ)存在点Q满足条件,理由如下:连接DF,EG,设Q为EG的中点,由(Ⅱ)知DF∩EG=Q,且QD=QE=QF=QG=EG,分别取PC,AB的中点M,N,连
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 饭店股份分配协议书
- 共建大数据学院协议书
- 金属回收调价协议书
- 醉酒死亡补偿协议书
- 销户车辆卖车协议书
- 解除制作合同协议书
- 尿痛护理措施
- 遣散员工补偿协议书
- 酒店合作框架协议书
- 银行终止扣款协议书
- 心理咨询的面谈技术
- DBJ∕T13-374-2021 福建省钢筋桁架叠合楼板技术标准
- 事故池管理的有关规定
- (word完整版)污水处理厂安全评价报告
- DB50∕T 867.6-2019 安全生产技术规范 第6部分:黑色金属冶炼企业
- 新产品开发流程课件
- 高中语文部编版选择性必修下册第四单元 单元学习导航 课件 (8张PPT)
- 化妆品原料-PPT课件
- 重庆市参加企业职工基本养老保险人员退休审批表
- 混凝土结构课程设计244
- 跨国道防护棚方案
评论
0/150
提交评论