




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省商丘市刘联合中学2023年高一数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.平面上有个圆,其中每两个都相交于两点,每三个都无公共点,它们将平面分成块区域,有,则的表达式为(
)A、
B、
C、
D、
参考答案:B2.已知函数,R,则是(
)A.最小正周期为的奇函数
B.最小正周期为的奇函数C.最小正周期为的偶函数
D.最小正周期为的偶函数
参考答案:C3.Sin1cos2tan3的值()A.无法确定 B.小于0
C.等于0
D.大于0参考答案:D4.纸质的正方体的六个面根据其方位分别标记为上、下、东、南、西、北。现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到右侧的平面图形,则标“△”的面的方位是A.南
B.北
C.西
D.下参考答案:B5.一个多面体的直观图、主视图、左视图、俯视图如下,、分别为、的中点.
下列结论中正确的个数有(
)①直线与相交.
②.③//平面.④三棱锥的体积为.A.4个
B.3个
C.2个
D.1个参考答案:B6.下列四个函数中,在上为增函数的是
(
)A.
B.
C.
D.参考答案:C7.设实数x,y满足,则z=x2+y2的取值范围是()A.[2,2]B.[10,20]C.[4,20]D.[,20]参考答案:D【考点】简单线性规划.【分析】由约束条件作出平面区域,数形结合得到最优解,联立方程组求出最优解的坐标,由z=x2+y2的几何意义得答案.【解答】解:由约束条件作出可行域如图,由图可知,可行域内的点到原点距离的最小值为d=,联立,得A(4,2),|OA|=,∴z=x2+y2的取值范围是:[].故选:D.8.如图为一个几何体的三视图,三视图中的两个不同的正方形的边长分别为1和2,则该几何体的体积为()A.6 B.7 C.8 D.9参考答案:B【考点】棱柱、棱锥、棱台的体积;由三视图求面积、体积.【分析】由已知中三视图可得该几何体是一个大正方体挖去一个小正方体所得的组合体,分别求出它们的体积,相减可得答案.【解答】解:由已知中三视图可得该几何体是一个大正方体挖去一个小正方体所得的组合体,大正方体的棱长为2,故体积为:8;小正方体的棱长为1,故体积为:1;故组合体的体积V=8﹣1=7,故选:B9.下列函数表示同一函数的是()
A、
B.
C、
D、参考答案:B10.如图,矩形ABCD的三个顶点A,B,C分别在函数,,的图像上,且矩形的边分别平行于两坐标轴,若点A的纵坐标为2,则点D的坐标为(
). A. B. C. D.参考答案:C解:本题主要考查对数函数,指数函数和幂函数.由图可知点在函数上,又点的纵坐标为,所以将代入对数函数解析式可求得点的坐标为,所以点的横坐标为,点的纵坐标为,点在幂函数的图像上,所以点的坐标为,所以点的横坐标为,点的指数函数的图像上,所以点的坐标为,所以点的纵坐标为,所以点的坐标为.故选.二、填空题:本大题共7小题,每小题4分,共28分11.已知函数f(x)=ax2+(b﹣3)x+3,x∈[a2﹣2,a]是偶函数,则a+b=.参考答案:4【考点】偶函数.【分析】利用偶函数的定义及图象关于y轴对称的特点,可以建立a2﹣2+a=0及,解得a,b,即可得到a+b【解答】解:∵函数f(x)=ax2+(b﹣3)x+3,x∈[a2﹣2,a]是偶函数∴a2﹣2+a=0∴a=﹣2或1∵a2﹣2<a∴a=1∵偶函数的图象关于y轴对称,∴=0∴b=3∴a+b=4故答案为:4.【点评】本题主要考查偶函数的定义和性质,结合二次函数的图象的对称轴,建立关于a,b的方程.注意奇偶函数的定义域关于原点对称的特点.是个基础题.12.已知全集U=R,集合A={0,1,2},B={x∈Z|x2≤3},如图阴影部分所表示的集合为.参考答案:{2}【考点】Venn图表达集合的关系及运算.【专题】数形结合;综合法;集合.【分析】根据Venn图和集合之间的关系进行判断.【解答】解:由Venn图可知,阴影部分的元素为属于A当不属于B的元素构成,所以用集合表示为A∩(?UB).B={x∈Z|x2≤3}={﹣1,0,1},则?UB={x∈Z|x≠0且x≠±1},则A∩(?UB)={2},故答案为:{2}.【点评】本题主要考查Venn图表达集合的关系和运算,比较基础.13.在△ABC中,若(a+b+c)(c+b﹣a)=3bc,则A=.参考答案:60°【考点】余弦定理.【分析】已知等式左边利用平方差公式化简,再利用完全平方公式展开,整理得到关系式,利用余弦定理表示出cosA,将得出的关系式代入求出cosA的值,即可确定出A的度数.【解答】解:已知等式整理得:(a+b+c)(c+b﹣a)=(b+c)2﹣a2=b2+c2﹣a2+2bc=3bc,即b2+c2﹣a2=bc,∴cosA===,∵A为三角形内角,∴A=60°.故答案为:60°14.已知等比数列的公比,则等于____________参考答案:15.已知,,则
.参考答案:1利用两角和差的正弦公式可得:,故,则
16.已知3a=2,那么log38﹣log362用a表示是.参考答案:a﹣2【考点】对数的运算性质.【分析】由对数的运算法则知log38=3log32,log36=log32+1,由此根据题设条件能求出log38﹣2log36用a表示的式子.【解答】解:∵3a=2,∴a=log32,log38﹣2log36=3log32﹣2(log32+log33)=3a﹣2(a+1)=a﹣2.故答案为:a﹣2【点评】本题考查对数的运算法则,解题时要认真审题,仔细求解,注意合理地进行转化.17.设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=
.参考答案:3【考点】6H:利用导数研究曲线上某点切线方程.【分析】根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.【解答】解:y=ax﹣ln(x+1)的导数,由在点(0,0)处的切线方程为y=2x,得,则a=3.故答案为:3.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某高校在2012年的自主招生考试成绩中随机抽取100名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.组号分组频数频率第1组50.050第2组①0.350第3组30②第4组200.200第5组100.100
(1)请先求出频率分布表中①,②位置的相应数据,再完成频率分布直方图;(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试;(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行面试,求:第4组至少有一名学生被考官A面试的概率.参考答案:(1)①35人,②0.300,直方图见解析;(2)3人、2人、1人;(3).【分析】(1)由频率分布直方图能求出第2组的频数,第3组的频率,从而完成频率分布直方图.(2)根据第3,4,5组的频数计算频率,利用各层的比例,能求出第3,4,5组分别抽取进入第二轮面试的人数.(3)设第3组的3位同学为,第4组的2位同学为,第5组的1位同学为,利用列举法能出所有基本事件及满足条件的基本事件的个数,利用古典概型求得概率.【详解】(1)①由题可知,第2组的频数为人,②第3组的频率为,频率分布直方图如图所示,
(2)因为第3,4,5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生进入第二轮面试,每组抽取的人数分别为:第3组:人,第4组:人,第5组:人,所以第3,4,5组分别抽取3人、2人、1人进入第二轮面试.(3)设第3组的3位同学为,第4组的2位同学为,第5组的1位同学为,则从这六位同学中抽取两位同学有种选法,分别为:,,,,,,,,,,,,,,,其中第4组的2位同学中至少有一位同学入选的有9种,分别为:,,,∴第4组至少有一名学生被考官面试的概率为.【点睛】本题考查频率分直方图、分层抽样的应用,考查概率的求法,考查数据处理能力、运算求解能力,是基础题.17.(10分)已知方程sin(α-3π)=2cos(α-4π),求的值.参考答案:∵sin(α-3π)=2cos(α-4π),∴-sin(3π-α)=2cos(4π-α),∴-sin(π-α)=2cos(-α),∴sinα=-2cosα,可知cosα≠0,20.已知数列{an}的前n项和Sn,且满足:,.(1)求数列{an}的通项公式;(2)若,求数列的前n项和Tn.参考答案:(1);(2).试题分析:(1)当时,可求出,当时,利用可求出是以2为首项,2为公比的等比数列,故而可求出其通项公式;(2)由裂项相消可求出其前项和.试题解析:(1)依题意:当时,有:,又,故,由①当时,有②,①-②得:化简得:,∴是以2为首项,2为公比的等比数列,∴.(2)由(1)得:,∴∴21.(14分)已知圆M经过三点A(2,2),B(2,4),C(3,3),从圆M外一点P(a,b)向该圆引切线PT,T为切点,且|PT|=|PO|(O为坐标原点).(1)求圆M的方程;(2)试判断点P是否总在某一定直线上,若是,求出该直线方程;若不是,请说明理由.参考答案:考点: 直线和圆的方程的应用;圆的一般方程.专题: 综合题.分析: (1)解法一:设圆M的方程为x2+y2+Dx+Ey+F=0,将三点A(2,2),B(2,4),C(3,3)代入可求;解法二:设圆M的方程为(x﹣a)2+(y﹣b)2=r2(r>0),将三点A(2,2),B(2,4),C(3,3)代入可求;解法三:求线段AB的垂直平分线与线段AC的垂直平分线的交点,可求圆心M的坐标,进而可求圆M的半径,从而可求圆M的方程;解法四:可判断△ABC是直角三角形,进而可求圆M的圆心M的坐标为AB的中点(2,3),半径,从而可求圆M的方程;(2)连接PM,根据,,利用|PT|=|PO|,可判断点P总在定直线上.解答: (1)解法一:设圆M的方程为x2+y2+Dx+Ey+F=0,…(1分)∵圆M经过三点A(2,2),B(2,4),C(3,3),∴…(4分)解得…(7分)∴圆M的方程为(x﹣2)2+(y﹣3)2=1.…(8分)解法二:设圆M的方程为(x﹣a)2+(y﹣b)2=r2(r>0),…(1分)∵圆M经过三点A(2,2),B(2,4),C(3,3),∴…(4分)解得…(7分)∴圆M的方程为(x﹣2)2+(y﹣3)2=1.…(8分)解法三:∵A(2,2),B(2,4),∴线段AB的垂直平分线方程为y=3,…(2分)∵A(2,2),C(3,3),∴线段AC的垂直平分线方程为即x+y﹣5=0,…(4分)由解得圆心M的坐标为(2,3).…(6分)故圆M的半径.∴圆M的方程为(x﹣2)2+(y﹣3)2=1.…(8分)解法四:∵,,,…(2分)∴|AC|2+|BC|2=4=|AB|2.∴△ABC是直角三角形.…(4分)∵圆M经过A,B,C三点,∴圆M是Rt△ACB的外接圆.…(6分)∴圆M的圆心M的坐标为AB的中点(2,3),半径.∴圆M的方程为(x﹣2)2+(y﹣3)2=1.…(8分)(2)连接PM,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设备维护缺陷管理制度
- 设施设备校准管理制度
- 设计团队文件管理制度
- 设计院大客户管理制度
- 诊所人员体诊管理制度
- 诊所消毒服务管理制度
- 诊疗项目审批管理制度
- 财务管理授权管理制度
- 货品库存资金管理制度
- 货物配送公司管理制度
- 沃尔玛收货管理制度
- 铁塔施工方案(3篇)
- 2025年高考化学湖北卷试题真题解读及复习备考指导(精校打印)
- 2025年连云港市中考数学试题卷(含答案)
- 2024初级会计职称考试《经济法基础》真题和答案
- CJ/T 358-2019非开挖工程用聚乙烯管
- 理论联系实际阐述文化在社会发展中具有什么样的作用?参考答案四
- 四川雅安天立学校2025年七下数学期末预测试题含解析
- 电子元器件品质协议书
- 破产拍卖协议书
- 驾校退款协议书
评论
0/150
提交评论