版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.是定义在上的增函数,且满足:的导函数存在,且,则下列不等式成立的是()A. B.C. D.2.在中,角的对边分别为,,若,,且,则的面积为()A. B. C. D.3.设m,n为直线,、为平面,则的一个充分条件可以是()A.,, B.,C., D.,4.若复数满足,则对应的点位于复平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.在区间上随机取一个数,使直线与圆相交的概率为()A. B. C. D.6.已知函数是偶函数,当时,函数单调递减,设,,,则的大小关系为()A. B. C. D.7.如图,矩形ABCD中,,,E是AD的中点,将沿BE折起至,记二面角的平面角为,直线与平面BCDE所成的角为,与BC所成的角为,有如下两个命题:①对满足题意的任意的的位置,;②对满足题意的任意的的位置,,则()A.命题①和命题②都成立 B.命题①和命题②都不成立C.命题①成立,命题②不成立 D.命题①不成立,命题②成立8.已知双曲线的渐近线方程为,且其右焦点为,则双曲线的方程为()A. B. C. D.9.已知函数,且的图象经过第一、二、四象限,则,,的大小关系为()A. B.C. D.10.若点是角的终边上一点,则()A. B. C. D.11.已知函数,将的图象上的所有点的横坐标缩短到原来的,纵坐标保持不变;再把所得图象向上平移个单位长度,得到函数的图象,若,则的值可能为()A. B. C. D.12.设等差数列的前项和为,若,则()A.23 B.25 C.28 D.29二、填空题:本题共4小题,每小题5分,共20分。13.已知向量=(1,2),=(-3,1),则=______.14.已知、为正实数,直线截圆所得的弦长为,则的最小值为__________.15.若函数,则的值为______.16.若函数,则__________;__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左右焦点分别是,点在椭圆上,满足(1)求椭圆的标准方程;(2)直线过点,且与椭圆只有一个公共点,直线与的倾斜角互补,且与椭圆交于异于点的两点,与直线交于点(介于两点之间),是否存在直线,使得直线,,的斜率按某种排序能构成等比数列?若能,求出的方程,若不能,请说理由.18.(12分)已知函数(Ⅰ)若,求曲线在点处的切线方程;(Ⅱ)若在上恒成立,求实数的取值范围;(Ⅲ)若数列的前项和,,求证:数列的前项和.19.(12分)某校为了解校园安全教育系列活动的成效,对全校学生进行一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记分,“不合格”记分.现随机抽取部分学生的成绩,统计结果及对应的频率分布直方图如下所示:等级不合格合格得分频数624(Ⅰ)若测试的同学中,分数段内女生的人数分别为,完成列联表,并判断:是否有以上的把握认为性别与安全意识有关?是否合格性别不合格合格总计男生女生总计(Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中,共选取人进行座谈,现再从这人中任选人,记所选人的量化总分为,求的分布列及数学期望;(Ⅲ)某评估机构以指标(,其中表示的方差)来评估该校安全教育活动的成效,若,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(Ⅱ)的条件下,判断该校是否应调整安全教育方案?附表及公式:,其中.20.(12分)对于给定的正整数k,若各项均不为0的数列满足:对任意正整数总成立,则称数列是“数列”.(1)证明:等比数列是“数列”;(2)若数列既是“数列”又是“数列”,证明:数列是等比数列.21.(12分)在直角坐标系中,直线的参数方程为(为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)把曲线向下平移个单位,然后各点横坐标变为原来的倍得到曲线(纵坐标不变),设点是曲线上的一个动点,求它到直线的距离的最小值.22.(10分)已知函数,的最大值为.求实数b的值;当时,讨论函数的单调性;当时,令,是否存在区间,,使得函数在区间上的值域为?若存在,求实数k的取值范围;若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据是定义在上的增函数及有意义可得,构建新函数,利用导数可得为上的增函数,从而可得正确的选项.【详解】因为是定义在上的增函数,故.又有意义,故,故,所以.令,则,故在上为增函数,所以即,整理得到.故选:D.【点睛】本题考查导数在函数单调性中的应用,一般地,数的大小比较,可根据数的特点和题设中给出的原函数与导数的关系构建新函数,本题属于中档题.2、C【解析】
由,可得,化简利用余弦定理可得,解得.即可得出三角形面积.【详解】解:,,且,,化为:.,解得..故选:.【点睛】本题考查了向量共线定理、余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.3、B【解析】
根据线面垂直的判断方法对选项逐一分析,由此确定正确选项.【详解】对于A选项,当,,时,由于不在平面内,故无法得出.对于B选项,由于,,所以.故B选项正确.对于C选项,当,时,可能含于平面,故无法得出.对于D选项,当,时,无法得出.综上所述,的一个充分条件是“,”故选:B【点睛】本小题主要考查线面垂直的判断,考查充分必要条件的理解,属于基础题.4、D【解析】
利用复数模的计算、复数的除法化简复数,再根据复数的几何意义,即可得答案;【详解】,对应的点,对应的点位于复平面的第四象限.故选:D.【点睛】本题考查复数模的计算、复数的除法、复数的几何意义,考查运算求解能力,属于基础题.5、C【解析】
根据直线与圆相交,可求出k的取值范围,根据几何概型可求出相交的概率.【详解】因为圆心,半径,直线与圆相交,所以,解得所以相交的概率,故选C.【点睛】本题主要考查了直线与圆的位置关系,几何概型,属于中档题.6、A【解析】
根据图象关于轴对称可知关于对称,从而得到在上单调递增且;再根据自变量的大小关系得到函数值的大小关系.【详解】为偶函数图象关于轴对称图象关于对称时,单调递减时,单调递增又且,即本题正确选项:【点睛】本题考查利用函数奇偶性、对称性和单调性比较函数值的大小关系问题,关键是能够通过奇偶性和对称性得到函数的单调性,通过自变量的大小关系求得结果.7、A【解析】
作出二面角的补角、线面角、线线角的补角,由此判断出两个命题的正确性.【详解】①如图所示,过作平面,垂足为,连接,作,连接.由图可知,,所以,所以①正确.②由于,所以与所成角,所以,所以②正确.综上所述,①②都正确.故选:A【点睛】本题考查了折叠问题、空间角、数形结合方法,考查了推理能力与计算能力,属于中档题.8、B【解析】试题分析:由题意得,,所以,,所求双曲线方程为.考点:双曲线方程.9、C【解析】
根据题意,得,,则为减函数,从而得出函数的单调性,可比较和,而,比较,即可比较.【详解】因为,且的图象经过第一、二、四象限,所以,,所以函数为减函数,函数在上单调递减,在上单调递增,又因为,所以,又,,则|,即,所以.故选:C.【点睛】本题考查利用函数的单调性比较大小,还考查化简能力和转化思想.10、A【解析】
根据三角函数的定义,求得,再由正弦的倍角公式,即可求解.【详解】由题意,点是角的终边上一点,根据三角函数的定义,可得,则,故选A.【点睛】本题主要考查了三角函数的定义和正弦的倍角公式的化简、求值,其中解答中根据三角函数的定义和正弦的倍角公式,准确化简、计算是解答的关键,着重考查了推理与运算能力,属于基础题.11、C【解析】
利用二倍角公式与辅助角公式将函数的解析式化简,然后利用图象变换规律得出函数的解析式为,可得函数的值域为,结合条件,可得出、均为函数的最大值,于是得出为函数最小正周期的整数倍,由此可得出正确选项.【详解】函数,将函数的图象上的所有点的横坐标缩短到原来的倍,得的图象;再把所得图象向上平移个单位,得函数的图象,易知函数的值域为.若,则且,均为函数的最大值,由,解得;其中、是三角函数最高点的横坐标,的值为函数的最小正周期的整数倍,且.故选C.【点睛】本题考查三角函数图象变换,同时也考查了正弦型函数与周期相关的问题,解题的关键在于确定、均为函数的最大值,考查分析问题和解决问题的能力,属于中等题.12、D【解析】
由可求,再求公差,再求解即可.【详解】解:是等差数列,又,公差为,,故选:D【点睛】考查等差数列的有关性质、运算求解能力和推理论证能力,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、-6【解析】
由可求,然后根据向量数量积的坐标表示可求.【详解】∵=(1,2),=(-3,1),∴=(-4,-1),则=1×(-4)+2×(-1)=-6故答案为-6【点睛】本题主要考查了向量数量积的坐标表示,属于基础试题.14、【解析】
先根据弦长,半径,弦心距之间的关系列式求得,代入整理得,利用基本不等式求得最值.【详解】解:圆的圆心为,则到直线的距离为,由直线截圆所得的弦长为可得,整理得,解得或(舍去),令,又,当且仅当时,等号成立,则.故答案为:.【点睛】本题考查直线和圆的位置关系,考核基本不等式求最值,关键是对目标式进行变形,变成能用基本不等式求最值的形式,也可用换元法进行变形,是中档题.15、【解析】
根据题意,由函数的解析式求出的值,进而计算可得答案.【详解】根据题意,函数,则,则;故答案为:.【点睛】本题考查分段函数的性质、对数运算法则的应用,考查函数与方程思想、转化与化归思想,考查运算求解能力.16、01【解析】
根据分段函数解析式,代入即可求解.【详解】函数,所以,.故答案为:0;1.【点睛】本题考查了分段函数求值的简单应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)不能,理由见解析【解析】
(1)设,则,由此即可求出椭圆方程;(2)设直线的方程为,联立直线与椭圆的方程可求得,则直线斜率为,设其方程为,联立直线与椭圆方程,结合韦达定理可得关于对称,可求得,假设存在直线满足题意,设,可得,由此可得答案.【详解】解:(1)设,则,,所以椭圆方程为;(2)设直线的方程为,与联立得,∴,因为两直线的倾斜角互补,所以直线斜率为,设直线的方程为,联立整理得,,所以关于对称,由正弦定理得,因为,所以,由上得,假设存在直线满足题意,设,按某种排列成等比数列,设公比为,则,所以,则此时直线与平行或重合,与题意不符,所以不存在满足题意的直线.【点睛】本题主要考查直线与椭圆的位置关系,考查计算能力与推理能力,属于难题.18、(Ⅰ);(Ⅱ);(Ⅲ)证明见解析.【解析】试题分析:将,求出切线方程求导后讨论当时和时的单调性证明,求出实数的取值范围先求出、的通项公式,利用当时,得,下面证明:解析:(Ⅰ)因为,所以,,切点为.由,所以,所以曲线在处的切线方程为,即(Ⅱ)由,令,则(当且仅当取等号).故在上为增函数.①当时,,故在上为增函数,所以恒成立,故符合题意;②当时,由于,,根据零点存在定理,必存在,使得,由于在上为增函数,故当时,,故在上为减函数,所以当时,,故在上不恒成立,所以不符合题意.综上所述,实数的取值范围为(III)证明:由由(Ⅱ)知当时,,故当时,,故,故.下面证明:因为而,所以,,即:点睛:本题考查了利用导数的几何意义求出参数及证明不等式成立,借助第二问的证明过程,利用导数的单调性证明数列的不等式,在求解的过程中还要求出数列的和,计算较为复杂,本题属于难题.19、(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)不需要调整安全教育方案.【解析】
(I)根据题目所给数据填写好列联表,计算出的值,由此判断出在犯错误概率不超过的前提下,不能认为性别与安全测试是否合格有关.(II)利用超几何分布的计算公式,计算出的分布列并求得数学期望.(III)由(II)中数据,计算出,进而求得的值,从而得出该校的安全教育活动是有效的,不需要调整安全教育方案.【详解】解:(Ⅰ)由频率分布直方图可知,得分在的频率为,故抽取的学生答卷总数为,.性别与合格情况的列联表为:是否合格性别不合格合格小计男生女生小计即在犯错误概率不超过的前提下,不能认为性别与安全测试是否合格有关.(Ⅱ)“不合格”和“合格”的人数比例为,因此抽取的人中“不合格”有人,“合格”有人,所以可能的取值为,.的分布列为:20151050所以.(Ⅲ)由(Ⅱ)知:.故我们认为该校的安全教育活动是有效的,不需要调整安全教育方案.【点睛】本小题主要考查列联表独立性检验,考查超几何分布的分布列、数学期望和方差的计算,所以中档题.20、(1)证明见详解;(2)证明见详解【解析】
(1)由是等比数列,由等比数列的性质可得:即可证明.(2)既是“数列”又是“数列”,可得,,则对于任意都成立,则成等比数列,设公比为,验证得答案.【详解】(1)证明:由是等比数列,由等比数列的性质可得:等比数列是“数列”.(2)证明:既是“数列”又是“数列”,可得,()(),()可得:对于任意都成立,即成等比数列,即成等比数列,成等比数列,成等比数列,设,()数列是“数列”时,由()可得:时,由()可得:,可得,同理可证成等比数列,数列是等比数列【点睛】本题是一道数列的新定义题目,考查了等比数列的性质、通项公式等基本知识,考查代数推理、转化与化归以及综合运用数学知识探究与解决问题的能力,属于难题.21、(1),;(2).【解析】
(1)在直线的参数方程中消去参数可得出直线的普通方程,在曲线的极坐标方程两边同时乘以得,进而可化简得出曲线的直角坐标方程;(2)根据变换得出的普通方程为,可设点的坐标为,利用点到直线的距离公式结合正弦函数的有界性可得出结果.【详解】(1)由(为参数),得,化简得,故直线的普通方程为.由,得,又,,.所以的直角坐标方程为;(2)由(1)得曲线的直角坐标方程为,向下平移个单位得到,纵坐标不变,横坐标变为原来的倍得到曲线的方程为,所以曲线的参数方程为(为参数).故点到直线的距离为,当时,最小为.【点睛】本题考查曲线的参数方程、极坐标方程与普通方程的相互转化,同时也考查了利用椭圆的参数方程解决点到直线的距离最值的求解,考查计算能力,属于中等题.22、(1);(2)时,在单调增;时,在单调递减,在单调递增;时,同理在单调递减,在单调递增;(3)不存在.【解析】分析:(1)利用导数研究函数的单调性,可得当时,取得极大值,也是最大值,由,可得结果;(2)求出,分三种情况讨论的范围,在定义域内,分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中物理第九章静电场及其应用课时4静电的防止与利用课件新人教版必修第三册
- 2024至2030年中国户内终端数据监测研究报告
- 2013-2017年中国油水分离器行业市场专项调研及企业并购重组重点信息分析研究报告
- 2010-2012年过氧化苯甲酰(BPO)行业市场研究与竞争力分析报告
- 2024至2030年中国口腔科技工室设备数据监测研究报告
- 2024至2030年中国单相电能表塑壳数据监测研究报告
- 2024至2030年中国不锈钢刀座数据监测研究报告
- 2024年中国防静电架空地板市场调查研究报告
- 2024年中国过滤料市场调查研究报告
- 2024年中国粘结膏市场调查研究报告
- 2024城市公共设施适老化设施服务要求与评价
- 专题05 狼(含答案与解析)-备战2024年中考语文之文言文对比阅读(全国版)
- 小学语文分层作业设计案例一等奖
- 少先队辅导员技能大赛考试题库300题(含答案)
- 医药代表院内管理制度
- 职业健康工作开展情况的报告
- 2023年10月云南昆明市西山区碧鸡街道社区青年人才招考笔试历年典型考题及考点剖析附答案详解
- 人美版(杨力)美术四年级上册《6. 科学与幻想》说课稿1
- 中等职业学校《CAD制图》课程标准
- 非遗文化白族扎染技艺
- 2024-2030年中国网络动漫行业市场深度调研及供需与投资价值研究分析报告
评论
0/150
提交评论