




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的一条渐近线方程为,则双曲线的离心率为()A. B. C. D.2.网络是一种先进的高频传输技术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精确到月)()A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月3.执行如图所示的程序框图后,输出的值为5,则的取值范围是().A. B. C. D.4.2020年是脱贫攻坚决战决胜之年,某市为早日实现目标,现将甲、乙、丙、丁4名干部派遺到、、三个贫困县扶贫,要求每个贫困县至少分到一人,则甲被派遣到县的分法有()A.6种 B.12种 C.24种 D.36种5.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从这10个数中任取3个数,则这3个数中至少有2个阳数且能构成等差数列的概率为()A. B. C. D.6.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是()A. B. C. D.7.已知抛物线的焦点与双曲线的一个焦点重合,且抛物线的准线被双曲线截得的线段长为,那么该双曲线的离心率为()A. B. C. D.8.已知三棱锥且平面,其外接球体积为()A. B. C. D.9.,则与位置关系是()A.平行 B.异面C.相交 D.平行或异面或相交10.已知全集,集合,,则()A. B. C. D.11.双曲线的渐近线方程为()A. B. C. D.12.阅读名著,品味人生,是中华民族的优良传统.学生李华计划在高一年级每周星期一至星期五的每天阅读半个小时中国四大名著:《红楼梦》、《三国演义》、《水浒传》及《西游记》,其中每天阅读一种,每种至少阅读一次,则每周不同的阅读计划共有()A.120种 B.240种 C.480种 D.600种二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的焦点为,其准线与坐标轴交于点,过的直线与抛物线交于两点,若,则直线的斜率________.14.函数的图像如图所示,则该函数的最小正周期为________.15.的展开式中,的系数是__________.(用数字填写答案)16.戊戌年结束,己亥年伊始,小康,小梁,小谭,小杨,小刘,小林六人分成四组,其中两个组各2人,另两个组各1人,分别奔赴四所不同的学校参加演讲,则不同的分配方案有_________种(用数字作答),三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知x,y,z均为正数.(1)若xy<1,证明:|x+z|⋅|y+z|>4xyz;(2)若=,求2xy⋅2yz⋅2xz的最小值.18.(12分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求曲线的普通方程和直线的直角坐标方程;(2)设点,若直线与曲线相交于、两点,求的值19.(12分)已知函数().(1)讨论的单调性;(2)若对,恒成立,求的取值范围.20.(12分)设,函数.(1)当时,求在内的极值;(2)设函数,当有两个极值点时,总有,求实数的值.21.(12分)如图,椭圆的左、右顶点分别为,,上、下顶点分别为,,且,为等边三角形,过点的直线与椭圆在轴右侧的部分交于、两点.(1)求椭圆的标准方程;(2)求四边形面积的取值范围.22.(10分)设函数.(1)当时,求不等式的解集;(2)若不等式恒成立,求实数a的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
由题意得出的值,进而利用离心率公式可求得该双曲线的离心率.【详解】双曲线的渐近线方程为,由题意可得,因此,该双曲线的离心率为.故选:B.【点睛】本题考查利用双曲线的渐近线方程求双曲线的离心率,利用公式计算较为方便,考查计算能力,属于基础题.2、C【解析】
根据图形,计算出,然后解不等式即可.【详解】解:,点在直线上,令因为横轴1代表2019年8月,所以横轴13代表2020年8月,故选:C【点睛】考查如何确定线性回归直线中的系数以及线性回归方程的实际应用,基础题.3、C【解析】
框图的功能是求等比数列的和,直到和不满足给定的值时,退出循环,输出n.【详解】第一次循环:;第二次循环:;第三次循环:;第四次循环:;此时满足输出结果,故.故选:C.【点睛】本题考查程序框图的应用,建议数据比较小时,可以一步一步的书写,防止错误,是一道容易题.4、B【解析】
分成甲单独到县和甲与另一人一同到县两种情况进行分类讨论,由此求得甲被派遣到县的分法数.【详解】如果甲单独到县,则方法数有种.如果甲与另一人一同到县,则方法数有种.故总的方法数有种.故选:B【点睛】本小题主要考查简答排列组合的计算,属于基础题.5、C【解析】
先根据组合数计算出所有的情况数,再根据“3个数中至少有2个阳数且能构成等差数列”列举得到满足条件的情况,由此可求解出对应的概率.【详解】所有的情况数有:种,3个数中至少有2个阳数且能构成等差数列的情况有:,共种,所以目标事件的概率.故选:C.【点睛】本题考查概率与等差数列的综合,涉及到背景文化知识,难度一般.求解该类问题可通过古典概型的概率求解方法进行分析;当情况数较多时,可考虑用排列数、组合数去计算.6、D【解析】
根据三视图判断出几何体为正四棱锥,由此计算出几何体的表面积.【详解】根据三视图可知,该几何体为正四棱锥.底面积为.侧面的高为,所以侧面积为.所以该几何体的表面积是.故选:D【点睛】本小题主要考查由三视图判断原图,考查锥体表面积的计算,属于基础题.7、A【解析】
由抛物线的焦点得双曲线的焦点,求出,由抛物线准线方程被曲线截得的线段长为,由焦半径公式,联立求解.【详解】解:由抛物线,可得,则,故其准线方程为,抛物线的准线过双曲线的左焦点,.抛物线的准线被双曲线截得的线段长为,,又,,则双曲线的离心率为.故选:.【点睛】本题考查抛物线的性质及利用过双曲线的焦点的弦长求离心率.弦过焦点时,可结合焦半径公式求解弦长.8、A【解析】
由,平面,可将三棱锥还原成长方体,则三棱锥的外接球即为长方体的外接球,进而求解.【详解】由题,因为,所以,设,则由,可得,解得,可将三棱锥还原成如图所示的长方体,则三棱锥的外接球即为长方体的外接球,设外接球的半径为,则,所以,所以外接球的体积.故选:A【点睛】本题考查三棱锥的外接球体积,考查空间想象能力.9、D【解析】结合图(1),(2),(3)所示的情况,可得a与b的关系分别是平行、异面或相交.选D.10、B【解析】
直接利用集合的基本运算求解即可.【详解】解:全集,集合,,则,故选:.【点睛】本题考查集合的基本运算,属于基础题.11、C【解析】
根据双曲线的标准方程,即可写出渐近线方程.【详解】双曲线,双曲线的渐近线方程为,故选:C【点睛】本题主要考查了双曲线的简单几何性质,属于容易题.12、B【解析】
首先将五天进行分组,再对名著进行分配,根据分步乘法计数原理求得结果.【详解】将周一至周五分为组,每组至少天,共有:种分组方法;将四大名著安排到组中,每组种名著,共有:种分配方法;由分步乘法计数原理可得不同的阅读计划共有:种本题正确选项:【点睛】本题考查排列组合中的分组分配问题,涉及到分步乘法计数原理的应用,易错点是忽略分组中涉及到的平均分组问题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
求出抛物线焦点坐标,由,结合向量的坐标运算得,直线方程为,代入抛物线方程后应用韦达定理得,,从而可求得,得斜率.【详解】由得,即联立得解得或,∴.故答案为:.【点睛】本题考查直线与抛物线相交,考查向量的线性运算的坐标表示.直线方程与抛物线方程联立后消元,应用韦达定理是解决直线与抛物线相交问题的常用方法.14、【解析】
根据图象利用,先求出的值,结合求出,然后利用周期公式进行求解即可.【详解】解:由,得,,,则,,,即,则函数的最小正周期,故答案为:8【点睛】本题主要考查三角函数周期的求解,结合图象求出函数的解析式是解决本题的关键.15、【解析】
根据组合的知识,结合组合数的公式,可得结果.【详解】由题可知:项来源可以是:(1)取1个,4个(2)取2个,3个的系数为:故答案为:【点睛】本题主要考查组合的知识,熟悉二项式定理展开式中每一项的来源,实质上每个因式中各取一项的乘积,转化为组合的知识,属中档题.16、1080【解析】
按照先分组,再分配的分式,先将六人分成四组,其中两个组各2人,另两个组各1人有种,再分别奔赴四所不同的学校参加演讲有种,然后用分步计数原理求解.【详解】将六人分成四组,其中两个组各2人,另两个组各1人有种,再分别奔赴四所不同的学校参加演讲有种,则不同的分配方案有种.故答案为:1080【点睛】本题主要考查分组分配问题,还考查了理解辨析的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)最小值为1【解析】
(1)利用基本不等式可得,再根据0<xy<1时,即可证明|x+z|⋅|y+z|>4xyz.(2)由=,得,然后利用基本不等式即可得到xy+yz+xz≥3,从而求出2xy⋅2yz⋅2xz的最小值.【详解】(1)证明:∵x,y,z均为正数,∴|x+z|⋅|y+z|=(x+z)(y+z)≥=,当且仅当x=y=z时取等号.又∵0<xy<1,∴,∴|x+z|⋅|y+z|>4xyz;(2)∵=,即.∵,,,当且仅当x=y=z=1时取等号,∴,∴xy+yz+xz≥3,∴2xy⋅2yz⋅2xz=2xy+yz+xz≥1,∴2xy⋅2yz⋅2xz的最小值为1.【点睛】本题考查了利用综合法证明不等式和利用基本不等式求最值,考查了转化思想和运算能力,属中档题.18、(1)的普通方程为,的直角坐标方程为;(2).【解析】
(1)在曲线的参数方程中消去参数可得出曲线的普通方程,利用两角和的正弦公式以及可将直线的极坐标方程化为普通方程;(2)设直线的参数方程为(为参数),并设点、所对应的参数分别为、,利用韦达定理可求得的值.【详解】(1)由,得,,曲线的普通方程为,由,得,直线的直角坐标方程为;(2)设直线的参数方程为(为参数),代入,得,则,设、两点对应参数分别为、,,,,,.【点睛】本题考查了参数方程、极坐标方程与普通方程之间的转化,同时也考查了直线参数方程几何意义的应用,考查计算能力,属于中等题.19、(1)①当时,在上单调递减,在上单调递增;②当时,在上单调递增;(2).【解析】
(1)求出函数的定义域和导函数,,对讨论,得导函数的正负,得原函数的单调性;(2)法一:由得,分别运用导函数得出函数(),的单调性,和其函数的最值,可得,可得的范围;法二:由得,化为令(),研究函数的单调性,可得的取值范围.【详解】(1)的定义域为,,①当时,由得,得,在上单调递减,在上单调递增;②当时,恒成立,在上单调递增;(2)法一:由得,令(),则,在上单调递减,,,即,令,则,在上单调递增,,在上单调递减,所以,即,(*)当时,,(*)式恒成立,即恒成立,满足题意法二:由得,,令(),则,在上单调递减,,,即,当时,由(Ⅰ)知在上单调递增,恒成立,满足题意当时,令,则,所以在上单调递减,又,当时,,,使得,当时,,即,又,,,不满足题意,综上所述,的取值范围是【点睛】本题考查对于含参数的函数的单调性的讨论,不等式恒成立时,求解参数的范围,属于难度题.20、(1)极大值是,无极小值;(2)【解析】
(1)当时,可求得,令,利用导数可判断的单调性并得其零点,从而可得原函数的极值点及极大值;(2)表示出,并求得,由题意,得方程有两个不同的实根,,从而可得△及,由,得.则可化为对任意的恒成立,按照、、三种情况分类讨论,分离参数后转化为求函数的最值可解决;【详解】(1)当时,.令,则,显然在上单调递减,又因为,故时,总有,所以在上单调递减.由于,所以当时,;当时,.当变化时,的变化情况如下表:+-增极大减所以在上的极大值是,无极小值.(2)由于,则.由题意,方程有两个不等实根,则,解得,且,又,所以.由,,可得又.将其代入上式得:.整理得,即当时,不等式恒成立,即.当时,恒成立,即,令,易证是上的减函数.因此,当时,,故.当时,恒成立,即,因此,当时,所以.综上所述,.【点睛】本题考查利用导数求函数的最值、研究函数的极值等知识,考查分类讨论思想、转化思想,考查学生综合运用知识分析问题解决问题的能
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC TS 62818-1:2024 EN Conductors for overhead lines - Fiber reinforced composite core used as supporting member material - Part 1: Polymeric matrix composite cores
- 2025-2030年中国集线器市场运行动态与发展前景分析报告
- 2025-2030年中国铝板带箔材行业运营状况及发展规划分析报告
- 2025-2030年中国造影剂行业市场运行状况及前景趋势分析报告
- 重庆师范大学《酒水与酒吧管理》2023-2024学年第二学期期末试卷
- 宁夏大学新华学院《植物细胞工程》2023-2024学年第二学期期末试卷
- 济南大学《管理研究方法导读》2023-2024学年第二学期期末试卷
- 湖北工业大学《中学思想政治教育学科教育学》2023-2024学年第二学期期末试卷
- 天津体育职业学院《勘查地球物理方法及应用》2023-2024学年第二学期期末试卷
- 新疆机电职业技术学院《现场总线技术》2023-2024学年第二学期期末试卷
- 语文学习任务群的解读及设计要领
- 光伏发电站项目安全技术交底资料
- 富血小板血浆(PRP)临床实践与病例分享课件
- 光伏工程施工组织设计
- 《护理科研》课件
- 人教版(2024新版)八年级上册物理《开启科学探索之旅》教学设计
- 年产1万吨的二氧化碳捕集及资源化利用全流程示范项目可行性研究报告模板-立项拿地
- 部编版语文四年级下册第六单元大单元作业设计
- 小学二年级上册数学思维训练题100道及答案解析
- 2024至2030年中国细胞农业动向追踪与发展前景现状探索报告
- 2024年新高考全国1卷第16题说题课件
评论
0/150
提交评论