江西省九江市甫田中学高二数学文上学期期末试题含解析_第1页
江西省九江市甫田中学高二数学文上学期期末试题含解析_第2页
江西省九江市甫田中学高二数学文上学期期末试题含解析_第3页
江西省九江市甫田中学高二数学文上学期期末试题含解析_第4页
江西省九江市甫田中学高二数学文上学期期末试题含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省九江市甫田中学高二数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数的周期为2,当时,那么函数的图像与函数的图像的交点共有(

).A.10个

B.9个

C.8个

D.1个

参考答案:A略2.有下列4个命题:①“若x+y=0,则x,y互为相反数”的逆否命题;②“若a>b,则a2>b2”的逆命题;③“若x≤﹣3,则x2﹣x﹣6>0”的否命题;④“若ab是无理数,则a,b是无理数”的逆命题.其中真命题的个数是()A.0 B.1 C.2 D.3参考答案:B【考点】四种命题.【分析】根据四种命题之间的关系进行判断即可.【解答】解:①若x+y=0,则x,y互为相反数,为真命题.则逆否命题也为真命题,故①正确,②“若a>b,则a2>b2”的逆命题为若a2>b2,则a>b,若a=﹣2,b=0.满足a2>b2,但a>b不出来了,故②为假命题;③“若x≤﹣3,则x2﹣x﹣6>0”的否命题为若x>﹣3,则x2﹣x﹣6≤0,当x=4时,x2﹣x﹣6≤0不成立,故③为假命题.④若ab是无理数,则a,b是无理数”的逆命题为:若a,b是无理数,则ab是无理数.该命题是假命题.取a=,b=,则ab===2.为有理数.所以该命题是假命题.故真命题的个数为1个,故选:B3.一个电路如图所示,C、D、E、F为6个开关,其闭合的概率都是,且是相互独立的,则灯亮的概率是()A.

B.

C.

D.参考答案:C4.将一枚骰子抛掷两次,若先后出现的点数分别为b、c,则方程有相等实根的概率为()A.

B.

C.

D.参考答案:D5.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是()A. B. C. D.无法确定参考答案:B【考点】CB:古典概型及其概率计算公式.【分析】本题是一个古典概型,试验发生包含的事件是从4件产品中取2件,共有C42种结果,满足条件的事件是取出的产品全是正品,共有C32种结果,根据概率公式得到结果.【解答】解:由题意知本题是一个古典概型,∵试验发生包含的事件是从4件产品中取2件,共有C42=6种结果,满足条件的事件是取出的产品全是正品,共有C32=3种结果,∴根据古典概型概率公式得到P=,故选B.【点评】本题是一个古典概型问题,这种问题在高考时可以作为文科的一道解答题,古典概型要求能够列举出所有事件和发生事件的个数,本题可以列举出所有事件.是一个基础题.6.命题“∈R,-x+1≥0”的否定是(

A.∈R,lnx+x+1<0

B.∈R,-x+1<0

C.∈R,-x+1>0

D.∈R,-x+1≥0参考答案:B略7.已知命题,则的否定形式为

A.

B. C.

D.参考答案:B略8.已知函数,则“”是“曲线存在垂直于直线的切线”的(

)A.充分不必要条件

B.必要不充分条件C.充要条件

D.既不充分也不必要条件参考答案:B9.某市生产总值连续两年持续增加.第一年的增长率为,第二年的增长率为,则该市这两年生产总值的年平均增长率为(

)

A.

B.

C.

D.

参考答案:D略10.如图,在正四棱柱中,分别是,的中点,则以下结论中不成立的是(

A.与垂直 B.与垂直C.与异面 D.与异面参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.以下四个关于圆锥曲线的命题中真命题的序号为

. ①设A、B为两个定点,k为正常数,,则动点P的轨迹为椭圆; ②双曲线与椭圆有相同的焦点; ③若方程的两根可分别作为椭圆和双曲线的离心率; ④到定点及定直线的距离之比为的点的轨迹方程为.参考答案:②③略12.函数的单调递增区间是____________参考答案:.试题分析:由题意得,,令,得.考点:利用导数求单调区间.13.已知锐角△ABC的内角A,B,C所对的边分别为a,b,c,若acosB=4csinC﹣bcosA,则cosC=.参考答案:【考点】正弦定理.【分析】由正弦定理,三角形内角和定理,诱导公式,两角和的正弦函数公式化简已知等式可得sinC=4sin2C,结合C为锐角,可求sinC,进而利用同角三角函数基本关系式可求cosC的值.【解答】解:∵acosB=4csinC﹣bcosA,∴由正弦定理可得:sinAcosB+sinBcosA=4sin2C,又∵sinAcosB+sinBcosA=sin(A+B)=sinC,∴sinC=4sin2C,∵C为锐角,sinC>0,cosC>0,∴sinC=,cosC==.故答案为:.14.某工厂对某产品的产量与成本的资料分析后有如下数据:产量(千件)2356成本(万元)78912

则该产品的成本与产量之间的线性回归方程为

.参考答案:依题意,代公式计算得,所以线性回归方程为15.已知数列满足,则

参考答案:16.设,,,,是1,2,3,4,5的任一排列,则的最小值是_____.参考答案:35【分析】利用反序排列,推出结果即可.【详解】由题意可知:,,,,是1,2,3,4,5的反序排列时,取得最小值,即.故答案为:35.【点睛】本题考查反序排列的性质,考查计算能力17.已知四面体,,,,,则

.参考答案:5三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下左图所示. (I)请先求出频率分布表中①、②位置相应的数据,再在答题纸上完成下列频率分布直方图;(Ⅱ)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?

(Ⅲ)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求:第4组至少有一名学生被考官A面试的概率?参考答案:(Ⅰ)由题意知,第2组的频数为人,第3组的频率为,频率分布直方图如下:(Ⅱ)因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组分别为:第3组:人.第4组:人.

第5组:人,所以第3、4、5组分别抽取3人、2人、1人.(Ⅲ)设第3组的3位同学为,第4组的2位同学为,第5组的1位同学为,则从六位同学中抽两位同学有15种可能如下:其中第4组的2位同学至有一位同学入选的有:共9种.所以其中第4组的2位同学至少有一位同学入选的概率为

略19.△ABC三边长的倒数成等差数列,求证:角.参考答案:20.为了检验“喜欢玩手机游戏与认为作业多”是否有关系,某班主任对班级的30名学生进行了调查,得到一个2×2列联表:

认为作业多认为作业不多合计喜欢玩手机游戏182

不喜欢玩手机游戏

6

合计

30(Ⅰ)请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程);(Ⅱ)能否在犯错误的概率不超过0.005的前提下认为“喜欢玩手机游戏”与“认为作业多”有关系?(Ⅲ)若从不喜欢玩手机游戏的人中随机抽取3人,则至少2人认为作业不多的概率是多少?参考答案:略21.汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆);

轿车A轿车B轿车C舒适型100150z标准型300450600按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.(Ⅰ)求z的值;(Ⅱ)用分层抽样的方法在C类轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(Ⅲ)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.参考答案:解:(Ⅰ)设该厂这个月共生产轿车n辆,由题意得=,∴n=2000,∴z=2000﹣(100+300)﹣150﹣450﹣600=400.(Ⅱ)设所抽样本中有a辆舒适型轿车,由题意,得a=2.因此抽取的容量为5的样本中,有2辆舒适型轿车,3辆标准型轿车.用A1,A2表示2辆舒适型轿车,用B1,B2,B3表示3辆标准轿车,用E表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”,则基本事件空间包含的基本事件有:(A1,A2),(A1B1),(A1B2),(A1,B3,),(A2,B1),(A2,B2)(A2,B3),(B1B2),(B1,B3,),(B2,B3),共10个,事件E包含的基本事件有:(A1A2),(A1,B1,),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),共7个,故P(E)=,即所求概率为.(Ⅲ)样本平均数=(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9.设D表示事件“从样本中任取一数,该数与样本平均数之差的绝对不超过0.5”,则基本事件空间中有8个基本事件,事件D包括的基本事件有:9.4,8.6,9.2,8.7,9.3,9.0,共6个,∴P(D)=,即所求概率为.考点:古典概型及其概率计算公式;分层抽样方法.专题:概率与统计.分析:(Ⅰ)根据用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆,得每个个体被抽到的概率,列出关系式,得到n的值(Ⅱ)由题意知本题是一个古典概型,试验发生包含的事件数和满足条件的事件数,可以通过列举数出结果,根据古典概型的概率公式得到结果.(Ⅲ)首先做出样本的平均数,做出试验发生包含的事件数,和满足条件的事件数,根据古典概型的概率公式得到结果.解答:解:(Ⅰ)设该厂这个月共生产轿车n辆,由题意得=,∴n=2000,∴z=2000﹣(100+300)﹣150﹣450﹣600=400.(Ⅱ)设所抽样本中有a辆舒适型轿车,由题意,得a=2.因此抽取的容量为5的样本中,有2辆舒适型轿车,3辆标准型轿车.用A1,A2表示2辆舒适型轿车,用B1,B2,B3表示3辆标准轿车,用E表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”,则基本事件空间包含的基本事件有:(A1,A2),(A1B1),(A1B2),(A1,B3,),(A2,B1),(A2,B2)(A2,B3),(B1B2),(B1,B3,),(B2,B3),共10个,事件E包含的基本事件有:(A1A2),(A1,B1,),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),共7个,故P(E)=,即所求概率为.(Ⅲ)样本平均数=(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9.设D表示事件“从样本中任取一数,该数与样本平均数之差的绝对不超过0.5”,则基本事件空间中有8个基本事件,事件D包括的基本事件有:9.4,8.6,9.2,8.7,9.3,9.0,共6个,∴P(D)=,即所求概率为.点评:本题考查古典概型,考查用列举法来得到事件数,考查分层抽样,是一个概率与统计的综合题目,这种题目看起来比较麻烦,但是解题的原理并不复杂22.设直线3x+y+=0与圆x2+y2+x-2y=0相交于P、Q两点,O为坐标原点,若

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论