2022河南省洛阳市第十三中学高二数学理期末试卷含解析_第1页
2022河南省洛阳市第十三中学高二数学理期末试卷含解析_第2页
2022河南省洛阳市第十三中学高二数学理期末试卷含解析_第3页
2022河南省洛阳市第十三中学高二数学理期末试卷含解析_第4页
2022河南省洛阳市第十三中学高二数学理期末试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022河南省洛阳市第十三中学高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图,正方体的棱线长为1,线段上有两个动点E,F,且,则下列结论中错误的是

A.

B.

C.三棱锥的体积为定值

D.异面直线所成的角为定值参考答案:DA正确,易证B显然正确,;C正确,可用等积法求得;D错误。2.与圆都相切的直线有A、1条

B、2条

C、3条

D、4条参考答案:A3.函数(,则w.w.w.k.s.5.u.c.o.m(

A.

B.

C.

D.大小关系不能确定参考答案:C略4.i是虚数单位,=()A. B. C. D.参考答案:A【考点】复数代数形式的混合运算.【分析】化简复数的分母为实数,即可.【解答】解:i是虚数单位,=,故选A.5.双曲线的左焦点为,顶点为,是该双曲线右支上任意一点,则分别以线段为直径的两圆一定(

)(A)相交(B)内切(C)外切(D)相离参考答案:B6.下列选项中,说法正确的是()A.若命题“p或q”为真命题,则命题p和命题q均为真命题B.命题“若am2<bm2,则a<b”的逆命题是真命题C.命题“若a=﹣b,则|a|=|b|”的否命题是真命题D.命题“若为空间的一个基底,则构成空间的另一个基底”的逆否命题为真命题参考答案:D【考点】四种命题.【分析】A.根据复合命题真假关系进行判断,B.根据逆命题的定义进行判断,C.根据逆否命题的定义判断逆命题的真假即可,D.根据逆否命题的等价关系判断原命题为真命题即可.【解答】解:A.若命题“p或q”为真命题,则命题p和命题q至少有一个为真命题,故A错误,B.命题“若am2<bm2,则a<b”的逆命题为,命题“若a<b,则am2<bm2”为假命题,当m=0时,结论不成立,故B错误,C.命题“若a=﹣b,则|a|=|b|”的逆命题为“若|a|=|b|,则a=﹣b|”为假命题,a=b也成立,即逆命题为假命题,则否命题为假命题,故C错误,D.命题“若为空间的一个基底,则构成空间的另一个基底”,则原命题为真命题,则逆否命题也为真命题,故D正确故选:D.7.在等差数列中,,,则的值是 ()A.15 B.30 C.31 D.64 参考答案:A略8.已知A={y|y=log2x,x>1},B={y|y=()x,x>1},则A∩B=()A. B.(0,1) C. D.?参考答案:A【考点】交集及其运算.【分析】由题设条件知A={y|y>0},B={y|0<y<},由此能够得到A∩B的值.【解答】解:∵,∴=.故选A.【点评】本题考查集合的运算,解题时要注意公式的灵活运用.9.由曲线xy=1,直线y=x,y=3所围成的平面图形的面积为()A. B.ln3 C.4+ln3 D.4ln3参考答案:D10.如图,在空间直角坐标系中有直三棱柱ABC﹣A1B1C1,CA=CC1=2CB,则直线BC1与直线AB1夹角的余弦值为()A. B. C. D.参考答案:A【考点】LM:异面直线及其所成的角.【分析】根据题意可设CB=1,CA=CC1=2,分别以CA、CC1、CB为x轴、y轴和z轴建立如图坐标系,得到A、B、B1、C1四个点的坐标,从而得到向量与的坐标,根据异面直线所成的角的定义,结合空间两个向量数量积的坐标公式,可以算出直线BC1与直线AB1夹角的余弦值.【解答】解:分别以CA、CC1、CB为x轴、y轴和z轴建立如图坐标系,∵CA=CC1=2CB,∴可设CB=1,CA=CC1=2∴A(2,0,0),B(0,0,1),B1(0,2,1),C1(0,2,0)∴=(0,2,﹣1),=(﹣2,2,1)可得?=0×(﹣2)+2×2+(﹣1)×1=3,且=,=3,向量与所成的角(或其补角)就是直线BC1与直线AB1夹角,设直线BC1与直线AB1夹角为θ,则cosθ==故选A【点评】本题给出一个特殊的直三棱柱,求位于两个侧面的面对角线所成角的余弦之值,着重考查了空间向量的坐标运算和异面直线及其所成的角的概论,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.12.利用数学归纳法证明“

”时,从“”变到“”时,左边应增乘的因式是___

______;参考答案:2(2k+1)略12.若点O和点F(-2,0)分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为_________.参考答案:13.用“秦九韶算法”计算多项式,当x=2时的值的过程中,要经过

次乘法运算和

次加法运算。参考答案:5,514.已知函数,则__________.参考答案:【分析】由题,先求得导数,代入即可求得答案.【详解】因为所以故答案为【点睛】本题考查了求导,熟悉公式和复合函数的求导方法是解题关键,属于基础题.15.若,则,,,按由小到大的顺序排列为

参考答案:略16.若存在,使成立,则实数的取值范围是

.参考答案:略17.已知曲线W的方程为+-5x=0①请写出曲线W的一条对称轴方程________________②曲线W上的点的横坐标的取值范围是____________参考答案:

y=0(或x=)

[0,5]【分析】①由于曲线方程中变量是分开的,因此可只考虑纵坐标的对称性,也可只考虑横坐标的对称性;②解不等式可得.【详解】①由方程知是曲线上的点时,点也是曲线上的点,因此是一条对称轴,同样点与也同时是曲线上的点,因此也是一条对称轴;②,.故答案为①(或);②.【点睛】本题考查曲线与方程,考查用方程研究曲线的性质,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,,底面ABCD是直角梯形,.(1)求证:BC⊥平面PBD;(2)设E为侧棱PC上一点,,试确定的值,使得二面角的大小为45°.参考答案:(1)证明见解析;(2).【分析】(1)根据线面垂直的判定定理,即可证明结论成立;(2)先由(1)得两两垂直,以点为坐标原点,以方向分别为轴,轴,轴正方向,建立空间直角坐标系,分别求出平面与平面的一个法向量,根据向量夹角余弦值与二面角的大小,即可求出结果.【详解】(1)因为侧面底面,,所以底面,所以;又底面是直角梯形,,所以,因此,所以;又,且平面,平面,所以平面;(2)由(1)可得两两垂直,因此以点为坐标原点,以方向分别为轴,轴,轴正方向,建立如图所示的空间直角坐标系;则,,,,则,,,由(1)可知平面;所以为平面的一个法向量;又因为,所以,设平面的一个法向量为,则,即,令,则,即,所以,又二面角的大小为,所以,化简整理得,解得,因为为侧棱上一点,所以,因此.【点睛】本题主要考查线面垂直的证明,以及由二面角求其它量的问题,熟记线面垂直的判定定理,以及向量的方法求二面角即可,属于常考题型.19.设函数.(1)当时,求函数f(x)的最大值;(2)令,()其图象上任意一点处切线的斜率恒成立,求实数a的取值范围;(3)当,,方程有唯一实数解,求正数m的值.参考答案:(1)见解析;(2)见解析;(3)见解析【分析】(1)利用导数求函数的单调区间即得函数的最大值.(2)由题得,.再求右边二次函数的最大值即得.(3)转化为有唯一实数解,设,再研究函数在定义域内有唯一的零点得解.【详解】(1)依题意,知的定义域为,当时,,,令,解得.(∵)因为有唯一解,所以,当时,,此时单调递增;当时,,此时单调递减,所以的极大值为,此即为最大值.(2),,则有,上恒成立,所以,.当时,取得最大值,所以.(3)因为方程有唯一实数解,所以有唯一实数解,设,则,令,,因为,,所以(舍去),,当时,,在上单调递减;当时,,在上单调递增;当时,,取最小值.则,即,所以,因为,所以(*)设函数,因为当时,是增函数,所以至多有一解,因为,所以方程(*)的解为,即,解得.【点睛】(1)本题主要考查利用导数求函数的最值,考查利用导数研究不等式的恒成立问题,考查利用导数研究函数的零点,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2)研究函数的零点问题常用的有方程法、图像法、方程+图像法.20.已知某公司生产某品牌服装的年固定成本为10万元,每生产千件需另投入2.7万元,设该公司年内共生产该品牌服装千件并全部销售完,每千件的销售收入为万元,且.

(Ⅰ)写出年利润(万元)关于年产品(千件)的函数解析式;(Ⅱ)年产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?(注:年利润=年销售收入-年总成本)参考答案:解:(Ⅰ)当时,当时,

……………6分(Ⅱ)①当时,由当∴当时,取最大值,且

……………9分

②当时,当且仅当

……………12分综合①、②知时,取最大值.

所以当年产量为9千件时,该公司在这一品牌服装生产中获利最大.

……………13分

略21.设的最小值为k.(1)求实数k的值;(2)设,,,求证:参考答案:(1);(2)见详解.【分析】(1)将函数表示为分段函数,再求其最小值.(2)利用已知等式构造出可以利用均值不等式的形式.【详解】(1)当时,取得最小值,即(2)证明:依题意,,则.所以,当且仅当,即,时,等号成立.所以.【点睛】本题考查求含绝对值函数的最值,由均值不等式求最值.含绝对值的函数或不等式问题,一般可以利用零点分类讨论法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论