2023年四川省雅安高三下学期第六次检测数学试卷含解析_第1页
2023年四川省雅安高三下学期第六次检测数学试卷含解析_第2页
2023年四川省雅安高三下学期第六次检测数学试卷含解析_第3页
2023年四川省雅安高三下学期第六次检测数学试卷含解析_第4页
2023年四川省雅安高三下学期第六次检测数学试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023高考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.正的边长为2,将它沿边上的高翻折,使点与点间的距离为,此时四面体的外接球表面积为()A. B. C. D.2.设函数若关于的方程有四个实数解,其中,则的取值范围是()A. B. C. D.3.在中,,,分别为角,,的对边,若的面为,且,则()A.1 B. C. D.4.若函数为自然对数的底数)在区间上不是单调函数,则实数的取值范围是()A. B. C. D.5.下列函数中,在区间上单调递减的是()A. B. C. D.6.甲、乙、丙、丁四位同学高考之后计划去三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去社区,乙不去社区,则不同的安排方法种数为()A.8 B.7 C.6 D.57.若直线经过抛物线的焦点,则()A. B. C.2 D.8.已知为一条直线,为两个不同的平面,则下列说法正确的是()A.若,则 B.若,则C.若,则 D.若,则9.已知抛物线的焦点为,若抛物线上的点关于直线对称的点恰好在射线上,则直线被截得的弦长为()A. B. C. D.10.网络是一种先进的高频传输技术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精确到月)()A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月11.已知直线,,则“”是“”的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件12.在中,,,,若,则实数()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在矩形ABCD中,,,点E,F分别为BC,CD边上动点,且满足,则的最大值为________.14.平面直角坐标系中,O为坐标原点,己知A(3,1),B(-1,3),若点C满足,其中α,β∈R,且α+β=1,则点C的轨迹方程为15.在二项式的展开式中,的系数为________.16.已知正方形边长为,空间中的动点满足,,则三棱锥体积的最大值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足:对任意,都有.(1)若,求的值;(2)若是等比数列,求的通项公式;(3)设,,求证:若成等差数列,则也成等差数列.18.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD,∠BAD=60°,AB=PA=4,E是PA的中点,AC,BD交于点O.(1)求证:OE∥平面PBC;(2)求三棱锥E﹣PBD的体积.19.(12分)设首项为1的正项数列{an}的前n项和为Sn,数列的前n项和为Tn,且,其中p为常数.(1)求p的值;(2)求证:数列{an}为等比数列;(3)证明:“数列an,2xan+1,2yan+2成等差数列,其中x、y均为整数”的充要条件是“x=1,且y=2”.20.(12分)在综合素质评价的某个维度的测评中,依据评分细则,学生之间相互打分,最终将所有的数据合成一个分数,满分100分,按照大于或等于80分的为优秀,小于80分的为合格,为了解学生的在该维度的测评结果,在毕业班中随机抽出一个班的数据.该班共有60名学生,得到如下的列联表:优秀合格总计男生6女生18合计60已知在该班随机抽取1人测评结果为优秀的概率为.(1)完成上面的列联表;(2)能否在犯错误的概率不超过0.10的前提下认为性别与测评结果有关系?(3)现在如果想了解全校学生在该维度的表现情况,采取简单随机抽样方式在全校学生中抽取少数一部分来分析,请你选择一个合适的抽样方法,并解释理由.附:0.250.100.0251.3232.7065.02421.(12分)某大型单位举行了一次全体员工都参加的考试,从中随机抽取了20人的分数.以下茎叶图记录了他们的考试分数(以十位数字为茎,个位数字为叶):若分数不低于95分,则称该员工的成绩为“优秀”.(1)从这20人中任取3人,求恰有1人成绩“优秀”的概率;(2)根据这20人的分数补全下方的频率分布表和频率分布直方图,并根据频率分布直方图解决下面的问题.组别分组频数频率1234①估计所有员工的平均分数(同一组中的数据用该组区间的中点值作代表);②若从所有员工中任选3人,记表示抽到的员工成绩为“优秀”的人数,求的分布列和数学期望.22.(10分)设函数,.(1)求函数的极值;(2)对任意,都有,求实数a的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】

如图所示,设的中点为,的外接圆的圆心为,四面体的外接球的球心为,连接,利用正弦定理可得,利用球心的性质和线面垂直的性质可得四边形为平行四边形,最后利用勾股定理可求外接球的半径,从而可得外接球的表面积.【详解】如图所示,设的中点为,外接圆的圆心为,四面体的外接球的球心为,连接,则平面,.因为,故,因为,故.由正弦定理可得,故,又因为,故.因为,故平面,所以,因为平面,平面,故,故,所以四边形为平行四边形,所以,所以,故外接球的半径为,外接球的表面积为.故选:D.【点睛】本题考查平面图形的折叠以及三棱锥外接球表面积的计算,还考查正弦定理和余弦定理,折叠问题注意翻折前后的变量与不变量,外接球问题注意先确定外接球的球心的位置,然后把半径放置在可解的直角三角形中来计算,本题有一定的难度.2.B【解析】

画出函数图像,根据图像知:,,,计算得到答案.【详解】,画出函数图像,如图所示:根据图像知:,,故,且.故.故选:.【点睛】本题考查了函数零点问题,意在考查学生的计算能力和应用能力,画出图像是解题的关键.3.D【解析】

根据三角形的面积公式以及余弦定理进行化简求出的值,然后利用两角和差的正弦公式进行求解即可.【详解】解:由,得,∵,∴,即即,则,∵,∴,∴,即,则,故选D.【点睛】本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出的值以及利用两角和差的正弦公式进行计算是解决本题的关键.4.B【解析】

求得的导函数,由此构造函数,根据题意可知在上有变号零点.由此令,利用分离常数法结合换元法,求得的取值范围.【详解】,设,要使在区间上不是单调函数,即在上有变号零点,令,则,令,则问题即在上有零点,由于在上递增,所以的取值范围是.故选:B【点睛】本小题主要考查利用导数研究函数的单调性,考查方程零点问题的求解策略,考查化归与转化的数学思想方法,属于中档题.5.C【解析】

由每个函数的单调区间,即可得到本题答案.【详解】因为函数和在递增,而在递减.故选:C【点睛】本题主要考查常见简单函数的单调区间,属基础题.6.B【解析】根据题意满足条件的安排为:A(甲,乙)B(丙)C(丁);A(甲,乙)B(丁)C(丙);A(甲,丙)B(丁)C(乙);A(甲,丁)B(丙)C(乙);A(甲)B(丙,丁)C(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7种,选B.7.B【解析】

计算抛物线的交点为,代入计算得到答案.【详解】可化为,焦点坐标为,故.故选:.【点睛】本题考查了抛物线的焦点,属于简单题.8.D【解析】A.若,则或,故A错误;B.若,则或故B错误;C.若,则或,或与相交;D.若,则,正确.故选D.9.B【解析】

由焦点得抛物线方程,设点的坐标为,根据对称可求出点的坐标,写出直线方程,联立抛物线求交点,计算弦长即可.【详解】抛物线的焦点为,则,即,设点的坐标为,点的坐标为,如图:∴,解得,或(舍去),∴∴直线的方程为,设直线与抛物线的另一个交点为,由,解得或,∴,∴,故直线被截得的弦长为.故选:B.【点睛】本题主要考查了抛物线的标准方程,简单几何性质,点关于直线对称,属于中档题.10.C【解析】

根据图形,计算出,然后解不等式即可.【详解】解:,点在直线上,令因为横轴1代表2019年8月,所以横轴13代表2020年8月,故选:C【点睛】考查如何确定线性回归直线中的系数以及线性回归方程的实际应用,基础题.11.C【解析】

先得出两直线平行的充要条件,根据小范围可推导出大范围,可得到答案.【详解】直线,,的充要条件是,当a=2时,化简后发现两直线是重合的,故舍去,最终a=-1.因此得到“”是“”的充分必要条件.故答案为C.【点睛】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.12.D【解析】

将、用、表示,再代入中计算即可.【详解】由,知为的重心,所以,又,所以,,所以,.故选:D【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

利用平面直角坐标系,设出点E,F的坐标,由可得,利用数量积运算求得,再利用线性规划的知识求出的最大值.【详解】建立平面直角坐标系,如图(1)所示:设,,,即,又,令,其中,画出图形,如图(2)所示:当直线经过点时,取得最大值.故答案为:【点睛】本题考查了向量数量积的坐标运算、简单的线性规划问题,解题的关键是建立恰当的坐标系,属于基础题.14.【解析】

根据向量共线定理得A,B,C三点共线,再根据点斜式得结果【详解】因为,且α+β=1,所以A,B,C三点共线,因此点C的轨迹为直线AB:【点睛】本题考查向量共线定理以及直线点斜式方程,考查基本分析求解能力,属中档题.15.60【解析】

直接利用二项式定理计算得到答案.【详解】二项式的展开式通项为:,取,则的系数为.故答案为:.【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.16.【解析】

以为原点,为轴,为轴,过作平面的垂线为轴建立空间直角坐标系,设点,根据题中条件得出,进而可求出的最大值,由此能求出三棱锥体积的最大值.【详解】以为原点,为轴,为轴,过作平面的垂线为轴建立空间直角坐标系,则,,,设点,空间中的动点满足,,所以,整理得,,当,时,取最大值,所以,三棱锥的体积为.因此,三棱锥体积的最大值为.故答案为:.【点睛】本题考查三棱锥体积的最大值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)3;(2);(3)见解析.【解析】

(1)依据下标的关系,有,,两式相加,即可求出;(2)依据等比数列的通项公式知,求出首项和公比即可。利用关系式,列出方程,可以解出首项和公比;(3)利用等差数列的定义,即可证出。【详解】(1)因为对任意,都有,所以,,两式相加,,解得;(2)设等比数列的首项为,公比为,因为对任意,都有,所以有,解得,又,即有,化简得,,即,或,因为,化简得,所以故。(3)因为对任意,都有,所以有,成等差数列,设公差为,,,,,由等差数列的定义知,也成等差数列。【点睛】本题主要考查等差、等比数列的定义以及赋值法的应用,意在考查学生的逻辑推理,数学建模,综合运用数列知识的能力。18.(1)证明见解析(2)【解析】

(1)连接OE,利用三角形中位线定理得到OE∥PC,即可证出OE∥平面PBC;(2)由E是PA的中点,,求出S△ABD,即可求解.【详解】(1)证明:如图所示:∵点O,E分别是AC,PA的中点,∴OE是△PAC的中位线,∴OE∥PC,又∵OE平面PBC,PC平面PBC,∴OE∥平面PBC;(2)解:∵PA=AB=4,∴AE=2,∵底面ABCD为菱形,∠BAD=60°,∴S△ABD,∴三棱锥E﹣PBD的体积.【点睛】本题考查空间线、面位置关系,证明直线与平面平行以及求三棱锥的体积,注意等体积法的应用,考查逻辑推理、数学计算能力,属于基础题.19.(1)p=2;(2)见解析(3)见解析【解析】

(1)取n=1时,由得p=0或2,计算排除p=0的情况得到答案.(2),则,相减得到3an+1=4﹣Sn+1﹣Sn,再化简得到,得到证明.(3)分别证明充分性和必要性,假设an,2xan+1,2yan+2成等差数列,其中x、y均为整数,计算化简得2x﹣2y﹣2=1,设k=x﹣(y﹣2),计算得到k=1,得到答案.【详解】(1)n=1时,由得p=0或2,若p=0时,,当n=2时,,解得a2=0或,而an>0,所以p=0不符合题意,故p=2;(2)当p=2时,①,则②,②﹣①并化简得3an+1=4﹣Sn+1﹣Sn③,则3an+2=4﹣Sn+2﹣Sn+1④,④﹣③得(n∈N*),又因为,所以数列{an}是等比数列,且;(3)充分性:若x=1,y=2,由知an,2xan+1,2yan+2依次为,,,满足,即an,2xan+1,2yan+2成等差数列;必要性:假设an,2xan+1,2yan+2成等差数列,其中x、y均为整数,又,所以,化简得2x﹣2y﹣2=1,显然x>y﹣2,设k=x﹣(y﹣2),因为x、y均为整数,所以当k≥2时,2x﹣2y﹣2>1或2x﹣2y﹣2<1,故当k=1,且当x=1,且y﹣2=0时上式成立,即证.【点睛】本题考查了根据数列求参数,证明等比数列,充要条件,意在考查学生的综合应用能力.20.(1)见解析;(2)在犯错误的概率不超过0.10的前提下认为“性别与测评结果有关系”(3)见解析.【解析】

(1)由已知抽取的人中优秀人数为20,这样结合已知可得列联表;(2)根据列联表计算,比较后可得;(3)由于性别对结果有影响,因此用分层抽样法.【详解】解:(1)优秀合格总计男生62228女生141832合计204060(2)由于,因此在犯错误的概率不超过0.10的前提下认为“性别与测评结果有关系”.(3)由(2)可知性别有可能对是否优秀有影响,所以采用分层抽样按男女生比例抽取一定的学生,这样得到的结果对学生在该维度的总体表现情况会比较符合实际情况.【点睛】本题考查独立性检验,考查分层抽样的性质.考查学生的数据处理能力.属于中档题.21.(1);(2)①82,②分布列见解析,【解析】

(1)从20人中任取3人共有种结果,恰

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论