机械工程控制基础课件第4章1_第1页
机械工程控制基础课件第4章1_第2页
机械工程控制基础课件第4章1_第3页
机械工程控制基础课件第4章1_第4页
机械工程控制基础课件第4章1_第5页
已阅读5页,还剩65页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四章系统的频率特性分析1时间响应分析:主要用于分析线性系统的过渡过程,以时间t为独立变量,通过阶跃或脉冲输入作用下系统的瞬态时间响应来研究系统的性能;依据的数学模型为G(s)频率特性分析:以频率ω为独立变量,通过分析不同的谐波输入时系统的稳态响应来研究系统的性能;依据的数学模型为G(jω)频域分析的基本思想:把系统输入看成由许多不同频率的正弦信号组成,输出就是系统对不同频率信号响应的总和。4.1频率特性概述(1)频率响应:线性定常系统对谐波输入的稳态响应。(frequencyresponse

)1.频率响应与频率特性对稳定的线性定常系统输入一谐波信号xi(t)=Xisint

2稳态输出(频率响应):xo(t)=Xo()sin[ωt+(ω)]3稳态输出(频率响应)则【例】设系统的传递函数为输入谐波信号xi(t)=Xisint进行laplace逆变换,整理得与输入信号的幅值成正比与输入同频率,相位不同

同频率幅值比A()

相位差()ω的非线性函数(揭示了系统的频率响应特性)输入:

xi(t)=Xisinωt

稳态输出(频率响应):

xo(t)=XiA()sin[ωt+(ω)]4(2)频率特性:对系统频率响应特性的描述

(frequencycharacteristic)频率特性定义为ω的复变函数,幅值为A(),相位为()。5[s]()A()幅频特性:稳态输出与输入谐波的幅值比相频特性:稳态输出与输入谐波的相位差

()

62.频率特性与传递函数的关系

则系统的传递函数为:输入谐波函数xi(t)=Xisint,其拉式变换为

则设系统的微分方程为:7由数学推导可得出系统的稳态响应为根据频率特性定义,幅频特性和相频特性分别为故G(j)=G(j)ejG(j)就是系统的频率特性3.频率特性的求法

(1)频率响应→频率特性

如例1,系统的传递函数为所以故系统的频率特性为或表示为8稳态输出(频率响应)9(2)传递函数→频率特性

【例2】求例1的频率特性和频率响应。因此系统的频率响应为将传递函数G(s)中

的s换成jω,得到频率特性G(jω)。系统的频率特性为10系统传递函数频率特性微分方程一个系统可以用微分方程或传递函数来描述,也可以用频率特性来描述。11【例】图示机械系统,已知k=10N/m,c=10Ns/m,分别求和时位移的频率响应。解:系统的动力学方程为12一、频率特性的极坐标图(Nyquist图)也称幅相频率特性图134.2频率特性的图示方法G(j):的复变函数给定,G(j)可以用一矢量或其端点(坐标)来表示幅值(矢量的长度):A()=G(j)相位(与正实轴的夹角):()=∠G(j)()的符号:从正实轴开始,逆时针为正,顺时针为负1、Nyquist图及物理意义实部(在实轴上的投影):

U()=A()cos()虚部(在虚轴上的投影):V()=A()sin()常用的频率特性的图示方法有极坐标图和对数坐标图。14当从0∞,G(j)端点的轨迹即为频率特性的极坐标图

(Nyquist图-乃奎斯特图)图中的箭头方向为从小到大的方向。极坐标图中极坐标与直角坐标重合,极坐标的顶点在坐标原点。极坐标图不仅表示任一频率下的幅频特性和相频特性,而且也表示实频特性和虚频特性。15分析极坐标图(1)当ω=ω3时,Nyquist曲线与单位圆相交

幅频特性输入频率ω3的谐波信号时,输出谐波幅值等于输入谐波幅值。相频特性表示输出信号滞后于输入信号,其相位之差为16(2)当ω<ω3时,例如ω2,Nyquist曲线在单位圆外

幅频特性输入频率ω2的谐波信号时,输出谐波幅值增大。即输入谐波的频率较低时,输出谐波的幅值不但没有衰减,反而有增大。这一特性称为系统的低通特性。17(3)当ω>ω3时,例如ω4,Nyquist曲线在单位圆内

幅频特性输入频率ω4的谐波信号时,输出谐波幅值被衰减。且随着ω的增大,输出幅值衰减越来越大,当ω→∞时,这一特性称为系统的高频衰减特性。18(4)当ω=ω5时,Nyquist曲线与负实轴相交

幅频特性相频特性192.典型环节的Nyquist图(1)比例环节

传递函数:G(s)=K

频率特性:G(j)=K

幅频特性:G(j)=K相频特性:G(j)=0o

实频特性:U()=K

虚频特性:V()=0

实轴上的一定点,坐标(K,j0)

(2)积分环节

传递函数:G(s)=1/s频率特性:G(j)=1/j

幅频特性:G(j)=1/

相频特性:G(j)=-90o

实频特性:U()=0

虚频特性:V()=-1/

虚轴下半轴,由无穷远点指向原点20(3)微分环节

传递函数:G(s)=s频率特性:G(j)=j

幅频:G(j)=

相频:G(j)=90o

实频:U()=0

虚频:V()=

虚轴上半轴,由原点指向无穷远点21(4)惯性环节

当=0时,G(j)=1,G(j)=0o当=1/T时,,G(j)=-45o当=时,G(j)=0,G(j)=-90o传递函数:频率特性:幅频:相频:G(j)=-arctanT实频:虚频:2223当ω从0时,惯性环节频率特性的Nyquist图为正实轴下的一个半圆,圆心为(1/2,j0),半径为1/2。0ReIm1惯性环节G(s)=1/(Ts+1)ω=0ω=∞-450(5)一阶微分环节

传递函数:G(s)=1+Ts始于点(1,j0),平行于虚轴频率特性:G(j)=1+jT

幅频:相频:G(j)=arctanT

实频:U()=1

虚频:V()=T

24(6)振荡环节

传递函数:频率特性:令λ=

/n2526实频:虚频:幅频:相频:当

=0,即=0时,

G(j)=1,G(j)=0o;当=1,即=n时,G(j)=1/(2ξ),G(j)=-90o;当=,即

=时,G(j)=0,G(j)=-180o;

λ=

/n270ReIm1AB振荡环节G(jω)曲线与虚轴交点B的频率是无阻尼固有频率n此时的幅值为1/(2ξ)

ξ<0.707

时,幅频G(j)在频率r

处出现峰值(谐振峰值,r:谐振频率)由28显然

r<d<n(有阻尼固有频率)r求r求得29阻尼比ξ取值不同,Nyquist图的形状也不同ξ≥0.707, 无谐振ξ=0.707,

A(ω)在初始点时最大ξ≤0.707幅频A(ω)出现峰值,且ξ越小,谐振频率和谐振峰值越高ξ≥1, 两个一阶环节的组合(7)延时环节

传递函数:G(s)=es

频率特性:G(j)=ej=cos-jsin

幅频:G(j)=1

相频:G(j)=-

实频:U()=cos

虚频:V()=-sin

Nyquist图:单位圆30ImRe0ω=01ω3.绘制Nyquist概略图形的方法一:

311)由G(j)求出其实频特性Re[G(j)]、虚频特性Im[G(j)]、

幅频特性G(j)、相频特性G(j)的表达式;2)求出若干特征点,如起点(=0)、终点(=)、与实轴的交点(Im[G(j)]=0)、与虚轴的交点(Re[G(j)]=0)等,并标注在极坐标图上;3)补充必要的几点,根据G(j)、G(j)和Re[G(j)]、Im[G(j)]的变化趋势以及G(j)所处的象限,作出Nyquist曲线的大致图形。

32传递函数一般表示成若干典型环节的串联形式:幅频特性=组成系统典型环节的幅频特性之乘积。相频特性=组成系统典型环节的相频特性之代数和。334.绘制Nyquist图的方法二:传递函数频率特性当ω=0时,若υ=0,则G(j)=K,G(j)=0o,Nyquist曲线的起始点是一个在正实轴上有有限值的点若υ=1,则G(j)=∞,G(j)=-90o,在低频段,Nyquist曲线逐渐接近于与负虚轴平行的直线;若υ=2,则G(j)=∞,G(j)=-180o,当ω=∞时,则G(j)=0,G(j)=(m-n)×90o当G(s)包含有导前环节时,若由于相位非单调下降,则Nyquist曲线将发生“弯曲”。

【例3】

传递函数,绘制Nyquist图。解方法1:系统的频率特性=0,U()=-KT,V()=-, G(j)=,G(j)=-90o=,U()=0,V()=0,

G(j)=0,G(j)=-180o幅频:相频:G(j)=-90o-arctanT实频:虚频:3435方法2:由传递函数可知,系统由比例环节、积分环节和惯性环节串联组成。所以幅频特性和相频特性是各个环节的组合。幅频:相频:G(j)=-90o-arctanTm=0,n=2,υ=1当ω=0时,则G(j)=∞,G(j)=-90o,在低频段,Nyquist曲线渐近于与负虚轴平行的直线;当ω=∞时,则G(j)=0,G(j)=(m-n)×90o=(0-2)×90o=-1800=0,U()=-,V()=, G(j)=,G(j)=-180o=,U()=0,V()=0, G(j)=0,G(j)=-360o【例4】传递函数,绘制Nyquist图。解方法1:系统的频率特性实频:虚频:令U()=036幅频:相频:

37方法2:由传递函数可知,系统由一个比例环节、两个积分环节和两个惯性环节串联组成。m=0,n=4,υ=2当ω=0时,则G(j)=∞,G(j)=-180o,当ω=∞时,则G(j)=0,G(j)=(0-4)×90o=-3600幅频:相频:

二、频率特性的对数坐标图(Bode图)Bode图对数坐标图由对数幅频特性图和对数相频特性图组成。

①对数幅频特性图:表示幅频特性横坐标:频率ω,按对数分度,单位s-1角频率变化10倍,在横坐标上线段长等于一个单位将该频带宽度称为十倍频程,用“dec”表示刻度值不标lgω值,而是标真值ω值。标注真值几何上的等分→真值的等比纵坐标:G(j)的分贝值按线性分度,单位dB1dB=20lgG(j)(简写为20lgG)3810倍频程dec39特别:当幅值分贝为0dB,G(j)=1,输出幅值=输入幅值幅值分贝dB>0,G(j)>1,输出幅值>输入幅值(放大)幅值分贝dB<0,G(j)<1,输出幅值<输入幅值(衰减)②对数相频特性图:表示相频特性横坐标:同上纵坐标:相位∠G(j)

按线性分度40传递函数一般表示成若干典型环节的串联形式:对数幅频特性=组成系统各典型环节的对数幅频特性之代数和。对数相频特性=组成系统各典型环节的相频特性之代数和。Bode图的优点

411)作图简单:将串联环节幅值的乘、除化为加、减。2)可用近似方法作图:先分段用直线作出对数幅频特性的渐近线,再用修正曲线修正。3)可分别作出各环节的Bode图,然后用叠加法得出系统的Bode图。4)便于细化感兴趣的频段。2.典型环节的Bode图(1)比例环节

传递函数G(s)=K频率特性G(j)=K

对数幅频特性20lgG(j)=20lgK

相频特性G(j)=0o42对数幅频特性曲线:一条高度为20lgK的水平直线对数相频特性曲线:与00重合的一直线43(2)积分环节对数幅频特性20lgG(j)=20lg1/=

-20lg

相频特性G(j)=-90o

对数幅频特性:过点(1,0)斜率-20dB/dec的直线对数相频特性:过点(0,-90o)

平行于横轴的直线传递函数G(s)=1/s频率特性G(j)=1/j

(3)微分环节

对数幅频特性20lgG(j)=20lg相频特性G(j)=90o对数幅频特性:过点(1,0)斜率20dB/dec的直线对数相频特性:过点(0,90o)平行于横轴的直线44传递函数G(s)=s频率特性G(j)=j

(4)惯性环节令幅频特性对数幅频特性45传递函数频率特性相频特性46低频段(ω<<ωT):20lgG(j)20lgT-20lgT=0dB低频渐近线:0dB水平线,止于点(ωT,0)对数幅频特性高频段(ω>>ωT):20lgG(j)20lgT-20lg高频渐近线:始于点(ωT,0),斜率为-20dB/dec的直线ωT是低频渐近线与高频渐近线交点处的频率,称为转角频率47=0,G(j)=0°;=T,G(j)=-45°;=,G(j)=-90°;对数相频特性曲线对称于点(T,-45°)≤0.1T时,G(j)0°≥10T时,G(j)-90°

对数相频特性:始于点(ωT,0),斜率20dB/dec的直线对数幅频特性:低频段(ω<<ωT):20lgG(j)20lgT-20lgT=0dB

高频段(ω>>ωT):20lgG(j)20lg-20lgT(5)一阶微分环节(或称导前环节)48传递函数频率特性ωT:转角频率49=0,G(j)=0°;=T,G(j)=45°;=,G(j)=90°;对数相频特性曲线对称于点(T,45°)对数相频特性:低频段:ω<<ωn(λ≈0)

20lgG(j)0dB

(低频渐近线为0dB水平线)

(6)振荡环节对数幅频特性:50传递函数频率特性振荡环节的Bode图=0,G(j)=0°;=n,G(j)=-90°;=,G(j)=-180°;对数相频特性曲线对称于点(1,-90°)51对数相频特性:高频段:ω>>ωn(λ>>1)20lgG(j)-40lgλ=-40lg+40lgn高频渐近线为始于点(1,0),斜率-40dB/dec的直线ωn:转角频率52(8)延时环节G(j)=1G(j)=-

G(s)=es传递函数G(j)=ej频率特性对数幅频特性20lgG(j)=0dB相频特性随增加而线性增加,在线性坐标中,G(j)是一直线,但对数相频特性是一曲线。相频特性53典型环节的对数幅频特性①积分环节:过点(1,0)斜率-20dB/dec的直线②微分环节:过点(1,0)斜率20dB/dec的直线③惯性环节:低频渐近线:0dB高频渐近线:始于点(ωT,0),斜率-20dB/dec的直线④导前环节:低频渐近线:0dB高频渐近线:始于点(ωT,0),斜率20dB/dec的直线⑤振荡环节:低频渐近线0dB高频渐近线始于点(1,0),斜率-40dB/dec的直线0dB③②⑤④1①54典型环节的对数相频特性②积分环节:过点(0,-90o)

平行于横轴的直线③微分环节:过点(0,90o)平行于横轴的直线④惯性环节:在00~-900范围内变换对称于点(T,-45°)的曲线⑤导前环节:在00~900范围内变换对称于点(T,45°)的曲线⑥振荡环节:在00~-1800范围内变换对称于点(1,-90°)的曲线55(1)环节曲线叠加法3.系统Bode图的绘制1)G(s)→若干个标准形式环节的传递函数(常数项为1)

2)确定标准形式环节传递函数的频率特性G(j)

3)确定各典型环节的转角频率4)作出各典型环节的对数幅频特性的渐近线565)将各典型环节的对数幅频特性叠加(不包括增益K)6)叠加后的曲线垂直移动20lgK(增益K),得到系统的对数幅频特性7)作各环节的对数相频特性,叠加得到系统的对数相频特性8)有延时环节时,对数幅频特性不变,对数相频特性加上-【例6】作传递函数为的系统的Bode图。解:1)G(s)→标准形→G(j)57系统由一比例环节、一导前环节、二个惯性环节串联组成。传递函数化为标准形式系统的频率特性58惯性环节导前环节作惯性环节、导前环节的对数幅频特性渐近线,叠加上移9.5dB(比例环节20lg3)作各环节的对数相频特性曲线,叠加转角频率转角频率求各环节的转角频率惯性环节转角频率590.10.21210201000db20db40db-20db--40dbL(ω)ω[-20][-20]60(2)顺序斜率法1)系统在低频段的频率特性为因此,其对数幅频特性在低频段表现为过点(1,20lgK),斜率为-20dB/dec的直线61若系统频率特性2)在各环节的转角频率处,对数幅频特性渐近线的斜率发生变化,其变化量等于相应的典型环节在其转角频率处斜率的变化量(即其高频渐近线的斜率)。

分析表明系统的Bode图具有以下特点:62顺序斜率法绘制对数幅频特性的步骤:G(s)→标准形式(常数项为1)→G(j)

;确定各典型环节的转角频率,标在横坐标轴上;过点(1,20lgK),作斜率为-20dB/dec的直线;延长该直线,每遇到一个转角频率改变一次斜率。

惯性环节增加-20dB/dec

一阶微分环节增加+20dB/dec

二阶振荡环节增加-40dB/dec630.10.21210201000db20db40db-20db--40dbL(ω)ω[-20][-20]64频率特性的特征量(频域性能指标)0.707A(0)A(ω)ωbωAmaxA(0)ωrωMΔ1)零频幅值A(0):表示当频率ω

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论