下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省梅州市梅东中学2023年高一数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.命题“若a>b,则ac>bc”(a,b,c都是实数)与它的逆命题、否命题和逆否命题中,真命题的个数是()A.4 B.3 C.2 D.0参考答案:D【考点】四种命题间的逆否关系.【分析】根据命题的等价关系,可先判断原命题与逆命题的真假.【解答】解:若a>b,c=0,则ac=bc.∴原命题为假;∵逆否命题与原命题等价∴逆否命题也为假
其逆命题为:若ac>bc,则a>b.若c<0时,则a<b,∴逆命题为假;又∵逆命题与否命题等价,∴否命题也为假;综上,四个命题中,真命题的个数为0.故选:D.【点评】根据命题的等价关系,四个命题中,真(假)命题的个数必为偶数个.2.等于(
)A.
B.
C.
D.参考答案:B
解析:3.已知函数,则的最小值是(
)A.0
B.C.1
D.不存在参考答案:B略4.数列满足
,若,则的值为(
)A.
B.
C.
D.参考答案:C5.数列中,由给出的数之间的关系可知的值是(
)A.
12
B.
15
C.
17
D.
18参考答案:B6.定义运算为:如,则函数的值域为A.R B.(0,1] C.(0,+∞)
D.[1,+∞)参考答案:B7.公比为2的等比数列的各项都是正数,且,则=()A.1
B.2
C.4
D.8参考答案:B8.设函数f(x)=a﹣|x|(a>0且a≠1),f(2)=4,则()A.f(﹣2)>f(﹣1) B.f(﹣1)>f(﹣2) C.f(1)>f(2) D.f(﹣2)>f(2)参考答案:A【考点】4B:指数函数的单调性与特殊点.【分析】本题考查的知识点是指数函数的单调性,由函数f(x)=a﹣|x|(a>0且a≠1),f(2)=4,我们不难确定底数a的值,判断指数函数的单调性,对四个结论逐一进行判断,即可得到答案.【解答】解:由a﹣2=4,a>0得a=,∴f(x)=()﹣|x|=2|x|.又∵|﹣2|>|﹣1|,∴2|﹣2|>2|﹣1|,即f(﹣2)>f(﹣1).故选A【点评】在处理指数函数和对数函数问题时,若对数未知,一般情况下要对底数进行分类讨论,分为0<a<1,a>1两种情况,然后在每种情况对问题进行解答,然后再将结论综合,得到最终的结果.9.的最小正周期为(
)A
B
C
D
参考答案:A10.为空间中三条直线,若,,则直线的关系是(
)A.平行
B.相交C.异面
D.以上都有可能参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.已知,且,则____________.参考答案:设是奇函数,∴,,故.12.(5分)函数y=log2(x2﹣2x)的单调递减区间是
.参考答案:(﹣∞,0)考点: 复合函数的单调性.专题: 函数的性质及应用.分析: 由题意可得,本题即求当t>0时,函数t的减区间,再利用二次函数的性质可得结论.解答: 令t=x2﹣2x,则函数y=log2t,本题即求当t>0时,函数t的减区间,由t>0,求得x<0,或x>2,即函数的定义域为(﹣∞,0)∪(2,+∞).再利用二次函数的性质可得当t>0时,函数t的减区间为(﹣∞,0),故答案为:(﹣∞,0).点评: 本题主要考查复合函数的单调性,对数函数、二次函数的性质,体现了转化的数学思想,属于基础题.13.已知函数,且,则_______________.参考答案:略14.函数恒过定点
参考答案:(2,1)15.已知=(3,),=(1,0),则?=.参考答案:3【考点】平面向量数量积的运算.【分析】由向量的数量积的坐标表示,计算即可得到所求值.【解答】解:=(3,),=(1,0),则?=3×1+×0=3.故答案为:3.【点评】本题考查向量的数量积的坐标表示,考查运算能力,属于基础题.16.执行如图所示的程序框图,则输出的a=_______.参考答案:127【分析】按照程序框图运行程序,直到a的值满足a>100时,输出结果即可.【详解】第一次循环:a=3;第二次循环:a=7;第三次循环:a=15;第四次循环:a=31;第五次循环:a=63;第六次循环:a=127,a>100,所以输出a.所以本题答案为127.【点睛】本题考查根据程序框图中的循环结构计算输出结果的问题,属于基础题.17.在等差数列{an}中,,公差为d,前n项和为Sn,当且仅当时,Sn取最大值,则d的取值范围是
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知数列{an}中,.(1)求证:是等比数列,求数列{an}的通项公式;(2)已知:数列{bn},满足①求数列{bn}的前n项和Tn;②记集合若集合M中含有5个元素,求实数的取值范围.参考答案:(1)证明见解析,(2)①②【分析】(1)计算得到:得证.(2)①计算的通项公式为,利用错位相减法得到.②将代入集合M,化简并分离参数得,确定数列的单调性,根据集合中含有个元素得到答案.【详解】(1),为等比数列,其中首项,公比为.所以,.(2)①数列的通项公式为
①
②①-②化简后得.②将代入得化简并分离参数得,设,则易知由于中含有个元素,所以实数要小于等于第5大的数,且比第6大的数大.,,综上所述.【点睛】本题考查了数列的证明,数列的通项公式,错位相减法,数列的单调性,综合性强计算量大,意在考查学生的计算能力和综合应用能力.19.已知正项数列{an},{bn}满足a1=3,a2=6,{bn}是等差数列,且对任意正整数n,都有成等比数列.(I)求数列{bn}的通项公式;(Ⅱ)设,试比较2Sn与的大小.参考答案:【考点】数列与不等式的综合;等差数列的通项公式;等比数列的通项公式;数列的求和.【分析】(I)利用正项数列{an},{bn}满足对任意正整数n,都有成等比数列,可得an=bnbn+1,结合{bn}是等差数列,可求数列的公差,从而可求数列{bn}的通项公式;(Ⅱ)确定数列{an}的通项,利用裂项法求和,再作出比较,可得结论.【解答】解:(I)∵正项数列{an},{bn}满足对任意正整数n,都有成等比数列,∴an=bnbn+1,∵a1=3,a2=6,∴b1b2=3,b2b3=6∵{bn}是等差数列,∴b1+b3=2b2,∴b1=,b2=∴bn=;(Ⅱ)an=bnbn+1=,则=2()∴Sn=2[()+()+…+()]=1﹣∴2Sn=2﹣∵=2﹣∴2Sn﹣()=∴当n=1,2时,2Sn<;当n≥3时,2Sn>.20.(本小题满分14分)已知直线的方向向量为,且过点,将直线绕着它与x轴的交点B按逆时针方向旋转一个锐角得到直线,直线:.(kR).(1)求直线和直线的方程;(2)当直线,,所围成的三角形的面积为3时,求直线的方程。参考答案:(1)
(2分)
(5分)(2)得出过定点,
(7分)
求出与的交点
(9分)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《人力资源使用》课件
- 养老院老人入住确认制度
- 养老院环境卫生与消毒制度
- 《理想的风筝课堂》课件
- 2024年民政部社会福利中心“养老服务人才培训”拟申报课件信息反馈表
- 2024年新型环保材料研发项目投标邀请函模板3篇
- 敬老院老人不愿入住协议书(2篇)
- 《青蒿素类抗疟药》课件
- 《丰子恺白鹅》课件
- 2025年遵义c1货运上岗证模拟考试
- 空气预热器市场前景调研数据分析报告
- 2024年南平实业集团有限公司招聘笔试参考题库附带答案详解
- 深圳港口介绍
- PLC在变电站自动化控制中的应用案例
- 2024版国开电大法学本科《合同法》历年期末考试案例分析题题库
- 产妇产后心理障碍的原因分析及心理护理措施
- HG-T 20583-2020 钢制化工容器结构设计规范
- T-SHNA 0004-2023 有创动脉血压监测方法
- 新版资质认定评审准则详细解读课件
- 静脉留置针的护理查房
- 发掘无限潜能成就最好的自己主题班会课件
评论
0/150
提交评论