下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省梅州市东海中学2022-2023学年高二数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知,是第四象限角,则(
)A.-7 B. C. D.7参考答案:A【分析】通过和差公式变形,然后可直接得到答案.【详解】根据题意,是第四象限角,故,而,故答案为A.【点睛】本题主要考查和差公式的运用,难度不大.2.某中学为提升学生的数学学习能力,进行了主题分别为“运算”、“推理”、“想象”、“建模”四场竞赛.规定:每场竞赛前三名得分分别为a、b、c(,且、、),选手的最终得分为各场得分之和.最终甲、乙、丙三人包揽了每场竞赛的前三名,在四场竞赛中,已知甲最终得分为15分,乙最终得分为7分,丙最终得分为10分,且乙在“运算”这场竞赛中获得了第一名,那么“运算”这场竞赛的第三名是(
)A.甲 B.乙 C.丙 D.甲和丙都有可能参考答案:C【分析】总分为,得出,只有两种可能或,再分类讨论,能得出结果.【详解】总分为,可得,只有两种可能或.若、、的值分别为、、,若乙在“运算”中得到第一名,得分,即使他在剩下的三场比赛中全得到第三名,得分总数为,不合乎题意.、、的值分别为、、,乙的得分组成只能是“运算”、“推理”、“想象”、“建模”分别得分、、、分,即乙在“运算”中得到第一名,其余三项均为第三名.由于甲得分为分,其得分组成只能是“运算”、“推理”、“想象”、“建模”分别得分、、、分,在“运算”比赛中,甲、乙、丙三人得分分别是、、分.因此,获得“运算”这场竞赛的第三名只能是丙,故选:C.【点睛】本题考查“运算”这场竞赛的第三名获奖学生的判断,考查简单的合情推理等基本性质,考查运算求解能力与推理能力,属于难题.3.某几何体的三视图如图所示,则该几何体的体积为(A)
(B)
(C)
(D)参考答案:B4.函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极小值点
(
)
A
1个
B
2个C
3个
D
4个参考答案:A5.在二面角α–l–β的两个面α、β内,分别有直线a,b,它们与棱l都不垂直,则(
)(A)当该二面角是直二面角时,可能有a∥b,也可能a⊥b(B)当该二面角是直二面角时,可能有a∥b,但不可能a⊥b(C)当该二面角不是直二面角时,可能有a∥b,但不可能a⊥b(D)当该二面角不是直二面角时,不可能有a∥b,但可能a⊥b参考答案:B6.直线
与圆相交于,两点,若,则的取值范围是(
)A.
B.
C.
D.参考答案:D略7.“”是“一元二次方程有实数解”的(
)
A、充分非必要条件
B、充分必要条件
C、必要非充分条件
D、非充分必要条件参考答案:A略8.下列说法中,正确的个数是(
)(1)在频率分布直方图中,中位数左边和右边的直方图的面积相等。(2)平均数是频率分布直方图的“重心”。(3)如果一组数中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变。(4)一个样本的方差s2=,则这组数据等总和等于60.(5)数据的方差为,则数据的方差为A、5
B、4
C、3
D、2
参考答案:A9.设,则f(x)(
)A.是有零点的减函数 B.是没有零点的奇函数C.既是奇函数又是减函数 D.既是奇函数又是增函数参考答案:D【分析】根据奇偶性定义,即可判断函数奇偶性;求得导函数,根据导函数符号即可判断函数的单调性。【详解】因为所以即为奇函数求得的导函数为所以为单调递增函数因为所以,即为的一个零点,所以B错误所以选D【点睛】本题考查了函数奇偶性的判断,根据导数判断函数的单调性,属于基础题。10.用秦九韶算法计算多项式
当时的值时,需要做乘法和加法的次数分别是(
)A.6,6
B.5,
6
C.5,
5
D.6,
5参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.关于的不等式的解集为,则不等式的解集为
.参考答案:略12.已知函数,则曲线在点处的切线方程_________参考答案:【分析】求得函数的导数,分别计算得,,再利用直线的点斜式方程,即可求解切线的方程,得到答案.【详解】由题意,函数,则,则,,所以曲线在处的切线方程为,即.【点睛】本题主要考查了利用导数的几何意义求解曲线在某点处的切线方程,其中解答中熟记导数的几何意义的应用,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.13.一个正三棱柱的三视图如右图所示,则该三棱柱的侧面积是
.参考答案:14.不等式x2﹣ax﹣b<0的解集是(2,3),则不等式bx2﹣ax﹣1>0的解集是.参考答案:(﹣,﹣)略15.在区间[-2,3]上随机选取一个数X,则X≤1的概率为
.
参考答案:16.三棱锥V-ABC中,AB=AC=10,BC=12,各侧面与底面所成的二面角都是45°,则棱锥的侧面积是_______,高是
.参考答案:.解析:据面积射影定理,,.∵,∴.又∵,且
.
17.函数的单调递减区间是_________.参考答案:(0,1)【分析】求出导函数,在上解不等式可得的单调减区间.【详解】,其中,令,则,故函数的单调减区间为,填.【点睛】一般地,若在区间上可导,且,则在上为单调减函数;反之,若在区间上可导且为减函数,则.注意求单调区间前先确定函数的定义域.
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知a,b,c均为实数,求证:.参考答案:【考点】不等式的证明.【分析】使用分析法,两边平方寻找使不等式成立的条件,只需条件恒成立即可【解答】证明:要证a2+b2+c2≥(a+b+c)2只要证3a2+3b2+3c2≥a2+b2+c2+2ab+2bc+2ca即证2a2+2b2+2c2≥2ab+2bc+2ca因为a2+b2≥2ab,b2+c2≥2ab,c2+a2≥2ca,所以2a2+2b2+2c2≥2ab+2bc+2ca成立,且以上各步均可逆,所以原不等式成立.19.已知命题:关于的不等式的解集为空集;命题:函数为增函数,若命题为假命题,为真命题,求实数的取值范围.参考答案:解:命题:关于的不等式的解集为空集,所以,即所以
则为假命题时:或;由命题:函数为增函数,所以,所以,则为假命题时:;命题为假命题,为真命题,所以、中一真一假,若真假,则若假真,则,所以实数的取值范围为或.略20.设x=﹣2与x=4是函数f(x)=x3+ax2+bx的两个极值点.(1)求常数a、b;(2)判断x=﹣2,x=4是函数f(x)的极大值点还是极小值点,并说明理由.参考答案:【考点】利用导数研究函数的极值.【分析】(1)先对函数f(x)进行求导,根据f'(﹣2)=0,f'(4)=0可求出a,b的值.(2)将a,b的值代入导函数,然后根据函数的单调性与其导函数的政府之间的关系可判断函数的单调性,进而确定是极大值还是极小值.【解答】解:(1)f′(x)=3x2+2ax+b.由极值点的必要条件可知x=﹣2和x=4是方程f′(x)=0的两根,则a=﹣3,b=﹣24.(2)f′(x)=3(x+2)(x﹣4),得当x<﹣2时,f′(x)>0;当﹣2<x<4时,f′(x)<0.∴x=﹣2是f(x)的极大值点.当x>4时,f′(x)>0,则x=4是f(x)的极小值点.21.给定两个命题,P:对任意实数都有恒成立;Q:关于的方程有实数根.如果P∨Q为真命题,P∧Q为假命题,求实数的取值范围.参考答案:……8分所以实数的取值范围为.……10分略22.函数角度看,可以看成是以r为自变量的函数,其定义域是.(1)证明:(2)试利用1的结论来证明:当n为偶数时,的展开式最中间一项的二项式系数最大;当n为奇数时的展开式最中间两项的二项式系数相等且最大.参考答案:(1)证明见解析;(2)证明见解析.【分析】(1)先根据组合数公式求出、,计算的值,从而证得结论;(2)设,由(1)可得,令,可得(等号不成立),故有当时,成立;当时,成立.故最大,当为奇数时,同理可证,从而证得结论.【详解】(1)因为,又因为,所以.则成立.(2)设,因为,,所以.令,所以,则(等号不成立),所以时,成立,反之,当时,成立.所以最大,即展开
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《眼科学》课程教学大纲
- 安徽省淮北市重点高中2024-2025学年高一上学期11月月考化学试题含答案
- 2024年低温奶制品采购合同范本
- 2024年出售光伏发电用地合同范本
- 解析几何教程+廖华奎王宝富+课后习题
- 单孔甲状腺手术论文
- 中日医疗日语
- 医院手术部建筑技术规范
- 2024美业年度规划
- 2024消防设备采购合同样本
- 医患沟通的法律基础
- 私立民办小学、初中、高中学校建设可行性项目投资计划书
- 分娩镇疼的护理课件
- 妊娠合并精神抑郁护理查房
- 项目研发商业计划书
- 软件使用授权书
- 肥料、农药采购服务方案(技术方案)
- 风电场安全措施
- 外派董事监事管理办法
- 起重吊装作业安全管理
- 医疗行业伦理委员会成员2023年工作总结
评论
0/150
提交评论