广东省揭阳市华侨高级中学高二数学理测试题含解析_第1页
广东省揭阳市华侨高级中学高二数学理测试题含解析_第2页
广东省揭阳市华侨高级中学高二数学理测试题含解析_第3页
广东省揭阳市华侨高级中学高二数学理测试题含解析_第4页
广东省揭阳市华侨高级中学高二数学理测试题含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省揭阳市华侨高级中学高二数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.阅读右边的程序,若输出的y=3,则输入的x的值为()A.1 B.2 C.±2 D.1或2参考答案:B【考点】程序框图.【分析】首先判断程序框图,转化为分段函数形式,然后根据y=3分别代入三段函数进行计算,排除不满足题意的情况,最后综合写出结果.【解答】解:根据程序框图分析,程序框图执行的是分段函数运算:y=,如果输出y为3,则当:﹣x+4=3时,解得x=1,不满足题意;当x2﹣1=3时,解得:x=2,或﹣2(舍去),综上,x的值2故选:B.【点评】本题考查程序框图,通过程序框图转化为分段函数,然后分析分段函数并求解,属于基础题.2.将4名志愿者分配到3所不同的学校进行学生课外活动内容调查,每个学校至少分配一名志愿者的方案种数为(

)A.24

B.36

C.72

D.144参考答案:B3.已知是等比数列,,,则(

)A. B.C. D.参考答案:D略4.函数的最小正周期是3π,则其图象向左平移个单位长度后得到的函数的一条对称轴是(

)A. B. C. D.参考答案:D【分析】由三角函数的周期可得,由函数图像的变换可得,平移后得到函数解析式为,再求其对称轴方程即可.【详解】解:函数的最小正周期是,则函数,经过平移后得到函数解析式为,由,得,当时,.故选D.【点睛】本题考查了正弦函数图像的性质及函数图像的平移变换,属基础题.5.下列结论正确的是()

A.若ac>bc,则a>b

B.若a2>b2,则a>b

C.若a>b,c<0,则a+c<b+c

D.若<,则a<b参考答案:D略6.已知向量,向量,若,则为(

)A.(-2,2) B.(-6,3)

C.(2,-1) D.(6,-3)参考答案:B7.若直线与双曲线的右支交于不同的两点,那么的取值范围是(

)(A)()(B)()

(C)()

(D)()参考答案:D8.椭圆的一个顶点与两个焦点构成等边三角形,则椭圆的离心率是()A. B. C. D.参考答案:B【考点】椭圆的简单性质.【分析】由题意可得cos60°==,从而得到椭圆的离心率的值.【解答】解:由题意可得cos60°==,∴椭圆的离心率是

=,故选B.9.如图是某年元宵花灯展中一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是()A. B. C. D.参考答案:A【分析】观察已知中的三个图形,得到每一次变化相当于“顺时针”旋转2个角,由此即可得到答案。【详解】由题意,观察已知的三个图象,每一次变化相当于“顺时针”旋转2个角,根据此规律观察四个答案,即可得到C项符合要求,故选C。【点睛】本题主要考查了归纳推理的应用,其中解答中熟记归纳的一般步骤是:(1)通过观察个别情况发现某项相同的性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想),合理使用归纳推理是解得关键,着重考查了推理与运算能力,属于基础题。10.命题:“若则”的否命题是

A.若,则

B.若则

C.若,则

D.若则参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.“”是“”的___________条件.(用“充要”“充分不必要”“必要不充分”“既不充分也不必要”填空)参考答案:12.椭圆+=1上的点到直线l:x﹣2y﹣12=0的最大距离为.参考答案:4【考点】椭圆的简单性质.【分析】先将椭圆方程化为参数方程,再求圆心到直线的距离d,利用三角函数的性质求其最大值,故得答案.【解答】解:由题意,设P(4cosθ,2sinθ)则P到直线的距离为d==,当sin(θ﹣)=1时,d取得最大值为4,故答案为:4.13.在区域D:内随机取一个点,则此点到点A(1,2)的距离大于2的概率是

参考答案:14.在矩形ABCD中,对角线AC与相邻两边所成的角为α,β,则有cos2α+cos2β=1.类比到空间中的一个正确命题是:在长方体ABCDA1B1C1D1中,对角线AC1与相邻三个面所成的角为α,β,γ,则cos2α+cos2β+cos2γ=.参考答案:2【考点】类比推理;棱柱的结构特征.【分析】由类比规则,点类比线,线类比面,可得出在长方体ABCDA1B1C1D1中,对角线AC1与相邻三个面所成的角为α,β,γ,则cos2α+cos2β+cos2γ=2,解直角三角形证明其为真命题即可.【解答】解:我们将平面中的两维性质,类比推断到空间中的三维性质.由在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β=1,我们根据长方体性质可以类比推断出空间性质,∵长方体ABCD﹣A1B1C1D1中,如图对角线AC1与过A点的三个面ABCD,AA1B1B、AA1D1D所成的角分别为α,β,γ,∴cosα=,cosβ=,cosγ=,∴cos2α+cos2β+cos2γ=,令同一顶点出发的三个棱的长分别为a,b,c,则有cos2α+cos2β+cos2γ===2故答案为:cos2α+cos2β+cos2γ=2.15.若m为正整数,则x(x+sin2mx)dx=.参考答案:【考点】67:定积分.【分析】将被积函数变形,两条定积分的可加性以及微积分基本定理求值.【解答】解:m为正整数,则x(x+sin2mx)dx=(x2+xsin2mx)dx=2+=2×+0=;故答案为:.16.f(x)=x3+x﹣8在(1,﹣6)处的切线方程为

.参考答案:4x﹣y﹣10=0【考点】利用导数研究曲线上某点切线方程.【分析】求出函数的导数,可得切线的斜率,再由点斜式方程可得切线的方程.【解答】解:f(x)=x3+x﹣8的导数为f′(x)=3x2+1,可得切线的斜率为k=3+1=4,即有切线的方程为y+6=4(x﹣1),化为4x﹣y﹣10=0.故答案为:4x﹣y﹣10=0.17.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有____

____种.参考答案:34分3步来计算,①从7人中,任取4人参加某个座谈会,分析可得,这是组合问题,共C74=35种情况;②选出的4人都为男生时,有1种情况,因女生只有3人,故不会都是女生,③根据排除法,可得符合题意的选法共35-1=34种;故答案为34.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分12分)“坐标法”是以坐标系为桥梁,把几何问题转化成代数问题,通过代数运算研究图形的几何性质的方法,它是解析几何中是基本的研究方法.请用坐标法证明下面问题:已知圆O的方程是,点,P、Q是圆O上异于A的两点.证明:弦PQ是圆O直径的充分必要条件是.参考答案:19.已知数列中,.(1)求证:为等比数列,并求的通项公式;(2)数列满足,求数列的前n项和.参考答案:(1)

…………5分(2),

…………8分用错位相减法可得

…………14分略20.已知椭圆的两个焦点,且椭圆短轴的两个端点与构成正三角形.

(I)求椭圆的方程;

(Ⅱ)过点(1,0)且与坐标轴不平行的直线与椭圆交于不同两点P、Q,若在轴上存在定点E(,0),使恒为定值,求的值.参考答案:解:(I)由题意知

=

,,(2分)∴

,=1∴椭圆的方程为=1

(II)当直线的斜率存在时,设其斜率为,则的方程为

消去得

设则由韦达定理得

则∴====

要使上式为定值须,解得

∴为定值21.某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照,,,,的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在,的数据).频率分布直方图

茎叶图(1)求样本容量n和频率分布直方图中x、y的值;(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到市政广场参加环保知识宣传的志愿者活动,求所抽取的2名同学来自不同组的概率.参考答案:(Ⅰ)由题意可知,样本容量……2分……………………4分.………………6分(Ⅱ)由题意可知,分数在[80,90)有5人,分别记为a,b,c,d,e,分数在[90,100)有2人,分别记为F,G.从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学有如下种情形:(a,b),(a,c),(a,d),(a,e),(a,F),(a,G),(b,c),(b,d),(b,e),(b,F),(b,G),(c,d),(c,e),(c,F),(c,G),(d,e),(d,F),(d,G),(e,F),(e,G),(F,G),共有21个基本事件;…………9分其中符合“抽取的2名同学来自不同组”的基本事件有(a,F),(a,G),(b,F),(b,G),(c,F),(c,G),(d,F),(d,G),(e,F),(e,G),共10个,所以P=10/21………………12分22.如图,在三棱锥VABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB.参考答案:【考点】LY:平面与平面垂直的判定;LS:直线与平面平行的判定.【分析】(1)由O,M分别为AB,VA的中点,得OM∥VB,即可得VB∥平面MOC.(2)由AC=BC,O为AB的中点,得OC⊥A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论