下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省揭阳市文彦中学2022-2023学年高一数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知向量,则(
)A.
B.
C.
D.参考答案:D略2.将函数y=sin(6x+)的图象上各点的横坐标伸长到原来的3倍,再向右平移个单位,得到的函数的一个对称中心是()A. B. C. D.参考答案:D【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由题意根据伸缩变换、平移变换求出函数的解析式,然后求出函数的一个对称中心即可.【解答】解:横坐标伸长到原来的3倍则函数变为y=sin(2x+)(x系数变为原来的),函数的图象向右平移个单位,则函数变为y=sin[2(x﹣)+]=sin2x;考察选项不难发现就是函数的一个对称中心坐标.故选D3.设集合A={-1,1,2},B={a+1,a2+3},A∩B={2},则实数a的值为(---)A.1
B.2
C.3
D.0
参考答案:A略4.在△ABC中,已知,.若△ABC最长边为,则最短边长为(
)A. B. C. D.参考答案:A试题分析:由,,解得,同理,由,,解得,在三角形中,,由此可得,为最长边,为最短边,由正弦定理:,解得.考点:正弦定理.5.集合M={x|x=,k∈Z},N={x|x=,k∈Z},则()A.M=N B.M?N C.M?N D.M∩N=?参考答案:C【考点】集合的包含关系判断及应用.【分析】从元素满足的公共属性的结构入手,对集合N中的k分奇数和偶数讨论,从而可得两集合的关系.【解答】解:对于集合N,当k=2n﹣1,n∈Z,时,N={x|x=,n∈Z}=M,当k=2n,n∈Z,时N={x|x=,n∈Z},∴集合M、N的关系为M?N.故选:C.6.已知是定义在上的偶函数,那么的值是(
)A. B. C. D.参考答案:B【分析】利用得出,再根据偶函数定义域关于原点对称,得出,从而得出的值.【详解】依题意得:,又,.故选:B.【点睛】本题主要考查的是函数的奇偶性的应用及定义域的对称性,是基础题.7.若关于的不等式的解集为(-2,+∞),则关于的不等式的解集为A.(-∞,-3)∪(-1,+∞)
B.(-∞,-1)∪(3,+∞)
C.(-3,1)
D.(-1,3)参考答案:D8.函数与在同一直角坐标系中的图象可能是(
)参考答案:D9.设,则
(A)a>b>c
(B)c>a>b
(C)b>c>a
(D)b>a>c参考答案:B10.若全集,则集合的真子集共有(
)A.个
B.个
C.个
D.个参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.在△ABC中,sinA∶sinB∶sinC=3∶2∶4,则cosC的值为____________.参考答案:-12.函数y=sin4x+cos4x-的相位____________,初相为__________。周期为_________,单调递增区间为____________。参考答案:13.设等差数列的前项和为____________参考答案:16略14.已知函数,是定义在区间上的奇函数,则_________.参考答案:27【分析】由于奇函数的定义域必然关于原点对称,可得m的值,再求【详解】由于奇函数的定义域必然关于原点对称∴m=3,故f(m)=故答案为27.【点睛】本题主要考查函数的奇偶性,利用了奇函数的定义域必然关于原点对称,属于基础题.15.lg+2lg2﹣()﹣1=
.参考答案:﹣1【考点】对数的运算性质.【专题】函数的性质及应用.【分析】利用对数的运算法则以及负指数幂的运算化简各项,利用lg2+lg5=1化简求值.【解答】解:原式=lg5﹣lg2+2lg2﹣2=lg5+lg2﹣2=lg10﹣2=1﹣2=﹣1;故答案为:﹣1.【点评】本题考查了对数的运算以及负指数幂的运算;用到了lg2+lg5=1.16.已知点在直线上,点Q在直线上,PQ的中点,且,则的取值范围是________.
参考答案:略17.如图,小正六边形沿着大正六边形的边,按顺时针方向滚动,小正六边形的边长是大正六边形边长的一半.当小正六边形沿着大正六边形的边滚动4周后返回出发时的位置,记在这个过程中向量围绕着点旋转角(其中为小正六边形的中心),则等于
.
参考答案:.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分10分)已知函数是定义在R上的单调函数满足,且对任意的实数有恒成立。(Ⅰ)试判断在R上的单调性,并说明理由;(Ⅱ)解关于的不等式。参考答案:(Ⅰ)是R上的减函数由可得在R上的奇函数,∵在R上是单调函数,由,所以为R上的减函数。(Ⅱ)由,又由于又由(Ⅰ)可得即:
解得:不等式的解集为19.(本小题8分)某公司为帮助尚有26.8万元无息贷款没有偿还的残疾人商店,借出20万元将该商店改建成经营状况良好的某种消费品专卖店,并约定用该店经营的利润逐步偿还债务(所有债务均不计利息)。已知该种消费品的进价为每件40元;该店每月销量q(百件)与销售价p(元/件)之间的关系用下图中的一条折线(实线)表示;职工每人每月工资为600元,该店应交付的其他费用为每月13200元。(1)若当销售价p为52元/件时,该店正好收支平衡,求该店的职工人数;(2)若该店只安排40名职工,则该店最早可在几年后还清所有债务,此时每件消费品的价格定为多少元?参考答案:解:(1)由图可知:当时,p、q关系为:当时,设此时该店职工人数为m,则:3800()=解得:m=54即该店职工人数为54人(2)由图可知:
设该店月收入为S,则:①当时,
即当时,最大月收入②当时,
即当时,最大月收入由于,故当时,还请债务的时间t最短,且即当每件消费品价格定为55元时,该店可在最短5年内还清债务。
略20.某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的统计数据的茎叶图如图所示.已知两组技工在单位时间内加工的合格零件平均数都为9.(1)分别求出m,n的值;(2)分别求出甲、乙两组技工在单位时间内加工的合格零件的方差s和s,并由此分析两组技工的加工水平;(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件个数之和大于17,则称该车间“质量合格”,求该车间“质量合格”的概率.参考答案:【考点】列举法计算基本事件数及事件发生的概率;茎叶图.【分析】(1)由两组技工在单位时间内加工的合格零件平均数都为9.利用茎叶图能求出m,n.(2)先分别求出,,由两组技工在单位时间内加工的合格零件平均数都为9,,得到乙组技工加工水平高.(3)质监部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,设两人加工的合格零件数分别为(a,b),利用列举法能求出该车间“质量合格”的概率.【解答】解:(1)∵两组技工在单位时间内加工的合格零件平均数都为9.∴由茎叶图得:,解得m=6,n=8.(2)=[(6﹣9)2+(7﹣9)2+(9﹣9)2+(11﹣9)2+(12﹣9)2]=.=[(7﹣9)2+(8﹣9)2+(9﹣9)2+(10﹣9)2+(11﹣9)2]=2.∵两组技工在单位时间内加工的合格零件平均数都为9,,∴两组技工平均数相等,但乙组技工较稳定,故乙组技工加工水平高.(3)质监部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,设两人加工的合格零件数分别为(a,b),则所有的(a,b)有:(6,7),(6,8),(6,9),(6,10),(6,11),(7,7),(7,8),(7,9),(7,10),(7,11),(9,7),(9,8),(9,9),(9,10),(9,11),(11,7),(11,8),(11,9),(11,10),(11,11),(12,7),(12,8),(12,9),(12,10),(12,11),共计25个,而a+b≤17的基本事件有:(6,7),(6,8),(6,9),(6,10),(6,11),(7,7),(7,8),(7,9),(7,10),(9,7),(9,8),共计11个,∴满足a+b>17的基本事件共有14个,∴该车间“质量合格”的基本事件有14个,∴该车间“质量合格”的概率p=.21.已知函数f(x)的定义域为D,若存在x0∈D,使等式f(x0)=x0成立,则称x=x0为函数f(x)的不动点,若x=±1均为函数f(x)=的不动点.(1)求a,b的值.(2)求证:f(x)是奇函数.参考答案:【考点】函数奇偶性的判断.【专题】函数的性质及应用.【分析】(1)直接利用定义把条件转化为f(﹣1)=﹣1,f(1)=1联立即可求a,b的值及f(x)的表达式;(2)根据奇函数的定义进行证明.【解答】解:(1)有题意可得:解得:;(2)由(1)知,,故f(x)=,定义域是R,设任意x,则,f(﹣x)==﹣=﹣f(x),故函数f(x)是奇函数.【点评】本题考查的知识点是函数解析式的求法,函数的奇偶性,属于基础题.22.(8分)在中,内角所对的边长分别是.(1)若,且的面积为,求的值;(2)若,试判断的形状.参考答案:解得a=2,b=2.(4分)(2)由sinC+sin(B-A)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 向党和人民保证的决心书
- 网络小额贷款合同格式
- 个人住房借款合同模板
- 向子女承诺的戒酒保证
- 简单定点采购合同范本
- 专业大理石采购安装合作协议
- 房屋买卖合同贷款的房产评估
- 设备安装与质量控制合同
- 货物买卖合同模板
- 海运物流服务合同
- 《精装修成品保护》课件
- 2024年房地产开发商与装修公司装修合同
- 2024年畜牧业经营管理教案:转型与升级
- 专利实施独占合同范例
- 浙江省绍兴市建功中学教育集团2024-2025学年八年级上学期10月份学科素养竞赛语文试卷
- 北洋政府的统治与军阀割据 统编版八年级历史上册
- 2024护理个人年终总结
- 2024 ESC慢性冠脉综合征指南解读(全)
- 【单元练】(必考题)高中物理必修3第十三章【电磁感应与电磁波初步】习题(答案解析)
- 二年级排球教案
- 人文与历史知识考试题库500题(含答案)
评论
0/150
提交评论