版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省惠州市地派中学高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知,棱长都相等的正三棱锥内接于一个球,某学生画出四个过球心的平面截球与正三棱锥所得的图形,如右图所示,则A.以上四个图形都是正确的
B.只有(2)(4)是正确的C.只有(4)是错误的
D.只有(1)(2)是正确的参考答案:C略2.直线l的倾斜角为α,将直线l绕着它与x轴交点逆时针旋转45°后,得到直线l′,则直线l′的倾斜角为()A.α+45°B.α﹣45°C.α﹣135°D.当0°≤α<135°时为α+45°;当135°≤α<180°时为α﹣135°.参考答案:D【考点】I2:直线的倾斜角.【分析】利用倾斜角的范围即可得出.【解答】解:由于倾斜角的范围是[0°,180°).∴当0°≤α<135°时,为α+45°,当135°≤α<180°时,为α﹣135°.故选:D.3.如图,空间四边形中,,点在上,且是的中点,则等于(
)A.
B.
C.
D.
参考答案:B,,,则=.4.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是()A.假设三内角都不大于60度B.假设三内角都大于60度C.假设三内角至多有一个大于60度D.假设三内角至多有两个大于60度参考答案:B【考点】反证法与放缩法.【分析】一些正面词语的否定:“是”的否定:“不是”;“能”的否定:“不能”;“都是”的否定:“不都是”;“至多有一个”的否定:“至少有两个”;“至少有一个”的否定:“一个也没有”;“是至多有n个”的否定:“至少有n+1个”;“任意的”的否定:“某个”;“任意两个”的否定:“某两个”;“所有的”的否定:“某些”.【解答】解:根据反证法的步骤,假设是对原命题结论的否定,“至少有一个”的否定:“一个也没有”;即“三内角都大于60度”.故选B5.下图是《集合》的知识结构图,如果要加入“子集”,则应该放在A.“集合的概念”的下位
B.“基本关系”的下位C.“集合的表示”的下位
D.“基本运算”的下位参考答案:B略6.等比数列{an}的前n项和为Sn,已知S3=a2+10a1,a5=9,则a1=(
)A. B. C. D.参考答案:C【考点】等比数列的前n项和.【专题】等差数列与等比数列.【分析】设等比数列{an}的公比为q,利用已知和等比数列的通项公式即可得到,解出即可.【解答】解:设等比数列{an}的公比为q,∵S3=a2+10a1,a5=9,∴,解得.∴.故选C.【点评】熟练掌握等比数列的通项公式是解题的关键.7.我们知道,在边长为a的正三角形内任一点到三边的距离之和为定值,类比上述结论,在棱长为a的正四面体内任一点到其四个面的距离之和为定值,此定值为()A. B. C. D.a参考答案:A【考点】F3:类比推理.【分析】由平面图形的性质向空间物体的性质进行类比时,常用的思路有:由平面图形中点的性质类比推理出空间里的线的性质,由平面图形中线的性质类比推理出空间中面的性质,由平面图形中面的性质类比推理出空间中体的性质.固我们可以根据已知中平面几何中,关于线的性质“正三角形内任意一点到三边距离之和是一个定值”,推断出一个空间几何中一个关于面的性质【解答】解:类比在边长为a的正三角形内任一点到三边的距离之和为定值,在一个正四面体中,计算一下棱长为a的三棱锥内任一点到各个面的距离之和,如图:由棱长为a可以得到BF=a,BO=AO=a,在直角三角形中,根据勾股定理可以得到BO2=BE2+OE2,把数据代入得到OE=a,∴棱长为a的三棱锥内任一点到各个面的距离之和4×a=a,故选:A.8.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是(
)A.若K2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;C.若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推判出现错误;D.以上三种说法都不正确.参考答案:C略9.以下程序运行后的输出结果为(
)A.17
B.19
C.21
D.23参考答案:C10.直线4x+3y﹣5=0与圆(x﹣1)2+(y﹣2)2=9相交于A、B两点,则AB的长度等于()A.1 B. C.2 D.4参考答案:D【考点】直线与圆相交的性质.【专题】直线与圆.【分析】根据直线和圆相交的弦长公式进行求解即可.【解答】解:圆心坐标为(1,2),半径R=3,圆心到直线的距离d==,则|AB|=2=2==4,故选:D【点评】本题主要考查直线和圆相交的应用,利用弦长公式是解决本题的关键.二、填空题:本大题共7小题,每小题4分,共28分11.一个抛物线型拱桥,当水面离拱顶2m时,水面宽4m.若水面下降2m,则水面宽度为m.参考答案:考点:抛物线的应用.专题:圆锥曲线的定义、性质与方程.分析:如图所示,建立直角坐标系.设抛物线的方程为x2=﹣2py(p>0).利用当水面离拱顶2m时,水面宽4m.可得B(2,﹣2).代入抛物线方程可得22=﹣2p×(﹣2),解得p.设D(x,﹣4),代入抛物线方程即可得出.解答:解:如图所示,建立直角坐标系.设抛物线的方程为x2=﹣2py(p>0).∵当水面离拱顶2m时,水面宽4m.∴B(2,﹣2).代入抛物线方程可得22=﹣2p×(﹣2),解得p=1.∴抛物线的标准方程为:x2=﹣2y.设D(x,﹣4),代入抛物线方程可得x2=﹣2×(﹣4),解得x=.∴|CD|=4.故答案为:4.点评:本题考查了抛物线的标准方程及其应用,考查了数形结合的思想方法,考查了计算能力,属于基础题.12.若复数z=1+i(i为虚数单位),是z的共轭复数,则z22的虚部为________.参考答案:4略13.下图为函数的图像,其在点M()处的切线为,与轴和直线分别交于点、,点,则面积以为自变量的函数解析式为
,若的面积为时的点M恰好有两个,则的取值范围为
。参考答案:
,(此小题每空2分)14.已知函数,若,则的取值范围是__
.参考答案:【知识点】分段函数、二次不等式解法【答案解析】解析:解:当a<0时,由得,解得-2≤a<0,当a≥0时得,解得0≤a≤2,综上得的取值范围是.【思路点拨】对于分段函数解不等式,可分段解不等式再求各段上解集的并集.15.,在上有最大值,则m最大值为__________.参考答案:3【分析】先对函数求导,求出,再由导数的方法研究函数单调性,进而可求出结果.【详解】因为,所以,因此,解得,所以,由得或;由得,所以函数在上单调递增,在上单调递减,在上单调递增;所以当时,取极大值,由得或;又在上有最大值,所以只需.故答案3【点睛】本题主要考查导数的应用,由函数在给定区间有最大值求参数,只需利用导数的方法研究函数单调性,即可求解,属于常考题型.16.(﹣2)(x+1)5展开式中x2项的系数为.参考答案:﹣10【考点】DB:二项式系数的性质.【分析】求出(x+1)5展开式的x3与x2项的系数,由此求出(﹣2)(x+1)5展开式中x2项的系数.【解答】解:(x+1)5展开式的通项公式为Tr+1=?x5﹣r,令5﹣r=3,得r=2,∴x3的系数为;令5﹣r=2,得r=3,∴x2的系数为;∴(﹣2)(x+1)5展开式中x2项的系数为:﹣2×=10﹣2×10=﹣10.故答案为:﹣10.17.六个人排成一排,丙在甲乙两个人中间(不一定相邻)的排法有__________种.参考答案:240略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设函数f(x)=x2+2ax﹣b2+4.(Ⅰ)若a是从﹣2、﹣1、0、1、2五个数中任取的一个数,b是从0、1、2三个数中任取的一个数,求函数f(x)无零点的概率;(Ⅱ)若a是从区间[﹣2,2]任取的一个数,b是从区间[0,2]任取的一个数,求函数f(x)无零点的概率.参考答案:【考点】列举法计算基本事件数及事件发生的概率;几何概型.【分析】(Ⅰ)问题等价于a2+b2<4,列举可得基本事件共有15个,事件A包含6个基本事件,可得概率;(Ⅱ)作出图形,由几何概型的概率公式可得.【解答】解:(Ⅰ)函数f(x)=x2+2ax﹣b2+4无零点等价于方程x2+2ax﹣b2+4=0无实根,可得△=(2a)2﹣4(﹣b2+4)<0,可得a2+b2<4记事件A为函数f(x)=x2+2ax﹣b2+4无零点,总的基本事件共有15个:(﹣2,0),(﹣2,1),(﹣2,2),(﹣1,0),(﹣1,1),(﹣1,2),(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),事件A包含6个基本事件,∴P(A)=(Ⅱ)如图,试验的全部结果所构成的区域为(矩形区域)事件A所构成的区域为A={(a,b)|a2+b2<4且(a,b)∈Ω}即图中的阴影部分.∴19.等差数列{an}中,已知a2=3,a7=13.(1)求数列{an}的通项公式;(2)求数列前8项和S8的值.参考答案:【考点】等差数列的前n项和;等差数列的通项公式.【分析】(1)由等差数列的通项公式先求出首项与公差,由此能求出数列{an}的通项公式.(2)由首项和公差,利用等差数列前n项和公式能求出数列前8项和S8的值.【解答】解:(1)设等差数列的公差为d∵a7=13,a2=3,∴a7﹣a2=5d=10∴d=2,又a1=1∴an=a1+(n﹣1)d=1+(n﹣1)*2=2n﹣1(2)由(1)知:a1=1,d=2,∴S8=8×1+=64.20.(原创)如右图,已知是边长为的正方形,平面,平面,设,(1)证明:平面平面;(2)求四面体的体积;(3)求点到平面的距离.参考答案:解:(1)由已知:,,所以平面,而平面,所以平面平面(2)四面体的体积所以四面体的体积为2(3)先求的三条边长:,,在直角梯形中易求出,由余弦定理知,所以,;点到平面的距离为,由体积法知:,解出所以点到平面的距离为2略21.设点P对应的复数为-3+3i,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P的极坐标为(
)A.(,)
B.(,)
C.(3,)
D.(-3,)参考答案:A略22.(本题满分16分)生产某种产品的年固定成本为250万元,每生产x千件,需要另投入成本为C(x),当年产量不足80千件时,(万元),当年产量不小于80千件时,(万元),通过市场分析,每件商品售价为0.05万元时,该商品能全部售完.(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式(利润=销售额-成本);(2)年产量为多少千件时,生产该商品获得的利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 污水处理设施招投标管理办法
- 能源环保技术研发招标准则
- 电力工程班车运营准则
- 纺织品行业发布会场地租赁合同
- 医疗音乐公司人才引进合同
- 铁路沿线砂石路施工合同
- 服务维修合同范例
- 无纺布销售合同范例
- 拦河坝修建合同范例
- 房贷用工合同范例
- 医院评审评价-等级评审课件
- 2024年数据安全管理员(高级技师)职业鉴定考试题库-下(判断题)
- DL∕T 817-2014 立式水轮发电机检修技术规程
- 《新能源场站及接入系统短路电流计算第2部分:光伏发电》
- 高中语文新课标课外必读书目
- 2024年广东省公需课《百县千镇万村高质量发展工程与城乡区域协调发展》考试答案
- 2024学年初中坚韧不拔坚守信仰班会教学设计
- 2024年北京市中考英语试卷真题(含答案)
- 2024-2030年中国稀土永磁电机行业市场发展分析及前景趋势与投资风险研究报告
- 药事管理学实践报告总结
- 欠工人工资用车抵押合同
评论
0/150
提交评论