模拟电子技术华成英童诗白常用半导体器件课件_第1页
模拟电子技术华成英童诗白常用半导体器件课件_第2页
模拟电子技术华成英童诗白常用半导体器件课件_第3页
模拟电子技术华成英童诗白常用半导体器件课件_第4页
模拟电子技术华成英童诗白常用半导体器件课件_第5页
已阅读5页,还剩88页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章

常用半导体器件§1.1半导体的基本知识1.1.1导体、半导体和绝缘体导体:自然界中很容易导电的物质称为导体,金属一般都是导体。绝缘体:有的物质几乎不导电,称为绝缘体,如橡皮、陶瓷、塑料和石英。半导体:另有一类物质的导电特性处于导体和绝缘体之间,称为半导体,如锗、硅、砷化镓和一些硫化物、氧化物等。半导体的导电机理不同于其它物质,所以它具有不同于其它物质的特点。例如:当受外界热和光的作用时,它的导电能力明显变化。往纯净的半导体中掺入某些杂质,会使它的导电能力明显改变。硅和锗的共价键结构共价键共用电子对+4+4+4+4+4表示除价电子外的正离子共价键中的两个电子被紧紧束缚在共价键中,称为束缚电子,常温下束缚电子很难脱离共价键成为自由电子,因此本征半导体中的自由电子很少,所以本征半导体的导电能力很弱。形成共价键后,每个原子的最外层电子是八个,构成稳定结构。共价键有很强的结合力,使原子规则排列,形成晶体。+4+4+4+4二、本征半导体的导电机理在绝对0度(T=0K)和没有外界激发时,价电子完全被共价键束缚着,本征半导体中没有可以运动的带电粒子(即载流子),它的导电能力为0,相当于绝缘体。在常温下,由于热激发,使一些价电子获得足够的能量而脱离共价键的束缚,成为自由电子,同时共价键上留下一个空位,称为空穴。1.载流子、自由电子和空穴2.本征半导体的导电机理+4+4+4+4在其它力的作用下,空穴吸引附近的电子来填补,这样的结果相当于空穴的迁移,而空穴的迁移相当于正电荷的移动,因此可以认为空穴是载流子。本征半导体中存在数量相等的两种载流子,即自由电子和空穴。温度越高,载流子的浓度越高。因此本征半导体的导电能力越强,温度是影响半导体性能的一个重要的外部因素,这是半导体的一大特点。本征半导体的导电能力取决于载流子的浓度。本征半导体中电流由两部分组成:

1.自由电子移动产生的电流。2.空穴移动产生的电流。1.1.3杂质半导体在本征半导体中掺入某些微量的杂质,就会使半导体的导电性能发生显著变化。其原因是掺杂半导体的某种载流子浓度大大增加。P型半导体:空穴浓度大大增加的杂质半导体,也称为(空穴半导体)。N型半导体:自由电子浓度大大增加的杂质半导体,也称为(电子半导体)。+4+4+5+4多余电子磷原子1、由施主原子提供的电子,浓度与施主原子相同。2、本征半导体中成对产生的电子和空穴。掺杂浓度远大于本征半导体中载流子浓度,所以,自由电子浓度远大于空穴浓度。自由电子称为多数载流子(多子),空穴称为少数载流子(少子)。二、P型半导体在硅或锗晶体中掺入少量的三价元素,如硼(或铟),晶体点阵中的某些半导体原子被杂质取代,硼原子的最外层有三个价电子,与相邻的半导体原子形成共价键时,产生一个空穴。这个空穴可能吸引束缚电子来填补,使得硼原子成为不能移动的带负电的离子。由于硼原子接受电子,所以称为受主原子。+4+4+3+4空穴硼原子P型半导体中空穴是多子,电子是少子。三、杂质半导体的示意表示法------------------------P型半导体++++++++++++++++++++++++N型半导体杂质型半导体多子和少子的移动都能形成电流。但由于数量的关系,起导电作用的主要是多子。近似认为多子与杂质浓度相等。P型半导体------------------------N型半导体++++++++++++++++++++++++扩散运动内电场E漂移运动扩散的结果是使空间电荷区逐渐加宽,空间电荷区越宽。内电场越强,就使漂移运动越强,而漂移使空间电荷区变薄。空间电荷区,也称耗尽层。漂移运动P型半导体------------------------N型半导体++++++++++++++++++++++++扩散运动内电场E------------------------++++++++++++++++++++++++空间电荷区N型区P型区电位UUh02.1.2PN结的单向导电性

PN结加上正向电压、正向偏置的意思都是:P区加正、N区加负电压。PN结加上反向电压、反向偏置的意思都是:

P区加负、N区加正电压。----++++RE一、PN结正向偏置内电场外电场变薄PN+_内电场被削弱,多子的扩散加强能够形成较大的扩散电流。二、PN结反向偏置----++++内电场外电场变厚NP+_内电场被被加强,多子的扩散受抑制。少子漂移加强,但少子数量有限,只能形成较小的反向电流。RE三、PN结的电容效应

PN结具有一定的电容效应,它由两方面的因素决定。

一是势垒电容CB

二是扩散电容CD

(1)势垒电容CB势垒电容是由空间电荷区离子薄层形成的。当外加电压使PN结上压降发生变化时,离子薄层的厚度也相应地随之改变,这相当PN结中存储的电荷量也随之变化,犹如电容的充放电。势垒电容的示意图如下。图01.09势垒电容示意图扩散电容是由多子扩散后,在PN结的另一侧面积累而形成的。因PN结正偏时,由N区扩散到P区的电子,与外电源提供的空穴相复合,形成正向电流。刚扩散过来的电子就堆积在P区内紧靠PN结的附近,形成一定的多子浓度梯度分布曲线。(2)扩散电容CD

反之,由P区扩散到N区的空穴,在N区内也形成类似的浓度梯度分布曲线。扩散电容的示意图如下图所示。2.1.3半导体二极管一、基本结构PN结加上管壳和引线,就成为半导体二极管。PN

二极管按结构分有点接触型、面接触型二大类。(1)点接触型二极管(2)面接触型二极管PN结面积小,结电容小,用于检波和变频等高频电路。PN结面积大,用于大电流整流电路。二、伏安特性式中IS为反向饱和电流,VD

为二极管两端的电压降,VT=kT/q称为温度的电压当量,k为玻耳兹曼常数,q为电子电荷量,T为热力学温度。对于室温(相当T=300K),则有VT=26mV。

第一象限的是正向伏安特性曲线,第三象限的是反向伏安特性曲线。(1)正向特性

硅二极管的死区电压Vth=0.6左右,

锗二极管的死区电压Vth=0.2左右。

当0<V<Vth时,正向电流为零,Vth称死区电压或开启电压。正向区分为两段:当V>Vth时,开始出现正向电流,并按指数规律增长。反向区也分两个区域:

当VBR<V<0时,反向电流很小,且基本不随反向电压的变化而变化,此时的反向电流也称反向饱和电流IS。

当V≥VBR时,反向电流急剧增加,VBR称为反向击穿电压。(2)反向特性三、主要参数1.最大整流电流

IF二极管长期使用时,允许流过二极管的最大正向平均电流。2.反向击穿电压UBR二极管反向击穿时的电压值。击穿时反向电流剧增,二极管的单向导电性被破坏,甚至过热而烧坏。手册上给出的最高反向工作电压UR一般是UBR的一半。3.反向电流

IR指二极管加反向峰值工作电压时的反向电流。反向电流大,说明管子的单向导电性差,因此反向电流越小越好。反向电流受温度的影响,温度越高反向电流越大。硅管的反向电流较小,锗管的反向电流要比硅管大几十到几百倍。以上均是二极管的直流参数,二极管的应用是主要利用它的单向导电性,主要应用于整流、限幅、保护等等。下面介绍两个交流参数。4.微变电阻rDiDuDIDUDQiDuDrD是二极管特性曲线上工作点Q附近电压的变化与电流的变化之比:5.二极管的极间电容二极管的两极之间有电容,此电容由两部分组成:势垒电容CB和扩散电容CD。势垒电容:势垒区是积累空间电荷的区域,当电压变化时,就会引起积累在势垒区的空间电荷的变化,这样所表现出的电容是势垒电容。扩散电容:为了形成正向电流(扩散电流),注入P区的电子在P

区有浓度差,越靠近PN结浓度越大,即在P区有电子的积累。同理,在N区有空穴的积累。正向电流大,积累的电荷多。这样所产生的电容就是扩散电容CD。P+-NCB在正向和反向偏置时均不能忽略。而反向偏置时,由于载流子数目很少,扩散电容可忽略。PN结高频小信号时的等效电路:势垒电容和扩散电容的综合效应rd二极管基本电路分析四、二极管基本电路分析二极管模型正向偏置时:管压降为0,电阻也为0。反向偏置时:电流为0,电阻为∞。当iD≥1mA时,vD=0.7V。1.理想模型2.恒压降模型3.折线模型(实际模型)4.小信号模型§1.3特殊二极管1.3.1稳压二极管UIIZIZmaxUZIZ稳压误差曲线越陡,电压越稳定。+-UZ动态电阻:rz越小,稳压性能越好。(4)稳定电流IZ、最大、最小稳定电流Izmax、Izmin。(5)最大允许功耗稳压二极管的参数:(1)稳定电压

UZ(2)电压温度系数U稳压值受温度变化影响的的系数。(3)动态电阻1.3.2光电二极管反向电流随光照强度的增加而上升。IU照度增加1.3.3发光二极管有正向电流流过时,发出一定波长范围的光,目前的发光管可以发出从红外到可见波段的光,它的电特性与一般二极管类似。§1.4半导体三极管1.4.1基本结构BECNNP基极发射极集电极PNP集电极基极发射极BCENPN型PNP型BECNNP基极发射极集电极基区:较薄,掺杂浓度低集电区:面积较大发射区:掺杂浓度较高BECNNP基极发射极集电极发射结集电结三极管实现电流放大时的外部条件发射结正偏集电结反偏VBEVCE要求VCE>>VBE

RBVC偏置电阻假设三极管为NPN型管改用一组电池来实现1.4.2电流放大原理1.4.2电流放大原理BECNNPEBRBECIE基区空穴向发射区的扩散可忽略。IBN进入P区的电子少部分与基区的空穴复合,形成电流IBN

,多数扩散到集电结。发射结正偏,发射区电子不断向基区扩散,形成发射极电流IE。BECNNPEBRBECIE集电结反偏,有少子形成的反向电流ICBO。ICBOIC=ICN+ICBOICNIBNICN从基区扩散来的电子作为集电结的少子,漂移进入集电结而被收集,形成ICN。IB=IBN+IEP-ICBO=IB’-ICBOIBBECNNPEBRBECIEICBOICNIC=ICN+ICBO

ICNIBNICN与IB’之比称为电流放大倍数要使三极管能放大电流,必须使发射结正偏,集电结反偏。BECIBIEICNPN型三极管BECIBIEICPNP型三极管1.4.3特性曲线ICmAAVVUCEUBERBIBECEB

实验线路一、输入特性UCE1VIB(A)UBE(V)204060800.40.8工作压降:硅管UBE0.6~0.7V,锗管UBE0.2~0.3V。UCE=0VUCE=0.5V死区电压,硅管0.5V,锗管0.2V。二、输出特性IC(mA)1234UCE(V)36912IB=020A40A60A80A100A此区域满足IC=IB称为线性区(放大区)。当UCE大于一定的数值时,IC只与IB有关,IC=IB。IC(mA)1234UCE(V)36912IB=020A40A60A80A100A此区域中UCEUBE,集电结正偏,IB>IC,UCE0.3V称为饱和区。IC(mA)1234UCE(V)36912IB=020A40A60A80A100A此区域中:IB=0,IC=ICEO,UBE<死区电压,称为截止区。例:

=50,USC

=12V,

RB

=70k,RC

=6k

当USB

=-2V,2V,5V时,晶体管的静态工作点Q位于哪个区?当USB

=-2V时:ICUCEIBUSCRBUSBCBERCUBEIB=0,IC=0IC最大饱和电流:Q位于截止区

例:

=50,USC

=12V,

RB

=70k,RC

=6k

当USB

=-2V,2V,5V时,晶体管的静态工作点Q位于哪个区?IC<

ICmax(=2mA),

Q位于放大区。ICUCEIBUSCRBUSBCBERCUBEUSB

=2V时:三、主要参数前面的电路中,三极管的发射极是输入输出的公共点,称为共射接法,相应地还有共基、共集接法。共射直流电流放大倍数:工作于动态的三极管,真正的信号是叠加在直流上的交流信号。基极电流的变化量为IB,相应的集电极电流变化为IC,则交流电流放大倍数为:1.电流放大倍数和

2.集-基极反向截止电流ICBOAICBOICBO是集电结反偏由少子的漂移形成的反向电流,受温度的变化影响。BECNNPICBOICEO=

(1+)ICBO

IBEIBE3.集-射极反向截止电流ICEOICEO受温度影响很大,当温度上升时,ICEO增加很快,所以IC也相应增加。三极管的温度特性较差。4.集电极最大电流ICM集电极电流IC上升会导致三极管的值的下降,当值下降到正常值的三分之二时的集电极电流即为ICM。5.集-射极反向击穿电压当集---射极之间的电压UCE超过一定的数值时,三极管就会被击穿。手册上给出的数值是25C、基极开路时的击穿电压U(BR)CEO。6.集电极最大允许功耗PCM集电极电流IC

流过三极管,所发出的焦耳热为:PC=ICUCE必定导致结温上升,所以PC

有限制。PCPCMICUCEICUCE=PCMICMU(BR)CEO安全工作区§1.5场效应晶体管场效应管与双极型晶体管不同,它是多子导电,输入阻抗高,温度稳定性好。结型场效应管JFET绝缘栅型场效应管MOS场效应管有两种:N基底:N型半导体PP两边是P区G(栅极)S源极D漏极一、结构1.5.1结型场效应管:导电沟道NPPG(栅极)S源极D漏极N沟道结型场效应管DGSDGSPNNG(栅极)S源极D漏极P沟道结型场效应管DGSDGS二、工作原理(以P沟道为例)UDS=0V时PGSDUDSUGSNNNNIDPN结反偏,UGS越大则耗尽区越宽,导电沟道越窄。PGSDUDSUGSNNIDUDS=0V时NNUGS越大耗尽区越宽,沟道越窄,电阻越大。但当UGS较小时,耗尽区宽度有限,存在导电沟道。DS间相当于线性电阻。PGSDUDSUGSNNUDS=0时UGS达到一定值时(夹断电压VP),耗尽区碰到一起,DS间被夹断,这时,即使UDS0V,漏极电流ID=0A。IDPGSDUDSUGSUGS<Vp且UDS>0、UGD<VP时耗尽区的形状NN越靠近漏端,PN结反压越大IDPGSDUDSUGSUGS<Vp且UDS较大时UGD<VP时耗尽区的形状NN沟道中仍是电阻特性,但是是非线性电阻。IDGSDUDSUGSUGS<VpUGD=VP时NN漏端的沟道被夹断,称为予夹断。UDS增大则被夹断区向下延伸。IDGSDUDSUGSUGS<VpUGD=VP时NN此时,电流ID由未被夹断区域中的载流子形成,基本不随UDS的增加而增加,呈恒流特性。ID予夹断曲线IDUDS2VUGS=0V1V3V4V5V可变电阻区夹断区恒流区输出特性曲线0三、特性曲线UGS0IDIDSSVP饱和漏极电流夹断电压转移特性曲线一定UDS下的ID-UGS曲线输出特性曲线IDUDS0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论