版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(共10小题,每小题3分,共30分)1.关于x的一元二次方程x2+3x+m=0有两个不相等的实数根,则A.m≤94B.m<942.人的头发直径约为0.00007m,这个数据用科学记数法表示()A.0.7×10﹣4B.7×10﹣5C.0.7×104D.7×1053.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BCA=∠DCAC.∠BAC=∠DAC D.∠B=∠D=90°4.对于下列调查:①对从某国进口的香蕉进行检验检疫;②审查某教科书稿;③中央电视台“鸡年春晚”收视率.其中适合抽样调查的是()A.①②B.①③C.②③D.①②③5.抛物线y=–x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:x…–2–1012…y…04664…从上表可知,下列说法错误的是A.抛物线与x轴的一个交点坐标为(–2,0) B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的6.如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是().A.线段EF的长逐渐增大 B.线段EF的长逐渐减少C.线段EF的长不变 D.线段EF的长不能确定7.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.68.不解方程,判别方程2x2﹣3x=3的根的情况()A.有两个相等的实数根 B.有两个不相等的实数根C.有一个实数根 D.无实数根9.下列运算正确的是()A.a12÷a4=a3 B.a4•a2=a8 C.(﹣a2)3=a6 D.a•(a3)2=a710.一个圆的内接正六边形的边长为2,则该圆的内接正方形的边长为()A. B.2 C.2 D.4二、填空题(本大题共6个小题,每小题3分,共18分)11.关于x的一元二次方程有两个不相等的实数根,则k的取值范围是▲.12.因式分解:=13.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线与扇形OAB的边界总有两个公共点,则实数k的取值范围是.14.已知二次函数f(x)=x2-3x+1,那么f(2)=_________.15.如图,在直角三角形ABC中,∠ACB=90°,CA=4,点P是半圆弧AC的中点,连接BP,线段即把图形APCB(指半圆和三角形ABC组成的图形)分成两部分,则这两部分面积之差的绝对值是_____.16.如图,以原点O为圆心的圆交X轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=20°,则∠OCD=.三、解答题(共8题,共72分)17.(8分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:时间x(天)
1≤x<50
50≤x≤90
售价(元/件)
x+40
90
每天销量(件)
200-2x
已知该商品的进价为每件30元,设销售该商品的每天利润为y元[求出y与x的函数关系式;问销售该商品第几天时,当天销售利润最大,最大利润是多少?该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.18.(8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:该班共有学生人;请将条形统计图补充完整;该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.19.(8分)高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的点处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(取1.732)20.(8分)△ABC在平面直角坐标系中的位置如图所示.画出△ABC关于y轴对称的△A1B1C1;将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.21.(8分)先化简,再求值:(),其中=22.(10分)如图,四边形ABCD中,∠C=90°,AD⊥DB,点E为AB的中点,DE∥BC.(1)求证:BD平分∠ABC;(2)连接EC,若∠A=30°,DC=,求EC的长.23.(12分)如图,在中,,是角平分线,平分交于点,经过两点的交于点,交于点,恰为的直径.求证:与相切;当时,求的半径.24.某厂按用户的月需求量(件)完成一种产品的生产,其中.每件的售价为18万元,每件的成本(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量(件)成反比.经市场调研发现,月需求量与月份(为整数,)符合关系式(为常数),且得到了表中的数据.月份(月)
1
2
成本(万元/件)
11
12
需求量(件/月)
120
100
(1)求与满足的关系式,请说明一件产品的利润能否是12万元;(2)求,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第个月和第个月的利润相差最大,求.
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】试题分析:根据题意得△=32﹣4m>0,解得m<94故选B.考点:根的判别式.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.2、B【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00007m,这个数据用科学记数法表示7×10﹣1.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3、B【解析】
由图形可知AC=AC,结合全等三角形的判定方法逐项判断即可.【详解】解:在△ABC和△ADC中∵AB=AD,AC=AC,∴当CB=CD时,满足SSS,可证明△ABC≌△ACD,故A可以;当∠BCA=∠DCA时,满足SSA,不能证明△ABC≌△ACD,故B不可以;当∠BAC=∠DAC时,满足SAS,可证明△ABC≌△ACD,故C可以;当∠B=∠D=90°时,满足HL,可证明△ABC≌△ACD,故D可以;故选:B.【点睛】本题考查了全等三角形的判定方法,熟练掌握判定定理是解题关键.4、B【解析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】①对从某国进口的香蕉进行检验检疫适合抽样调查;②审查某教科书稿适合全面调查;③中央电视台“鸡年春晚”收视率适合抽样调查.故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5、C【解析】当x=-2时,y=0,
∴抛物线过(-2,0),
∴抛物线与x轴的一个交点坐标为(-2,0),故A正确;
当x=0时,y=6,
∴抛物线与y轴的交点坐标为(0,6),故B正确;
当x=0和x=1时,y=6,
∴对称轴为x=,故C错误;
当x<时,y随x的增大而增大,
∴抛物线在对称轴左侧部分是上升的,故D正确;
故选C.6、C【解析】
因为R不动,所以AR不变.根据三角形中位线定理可得EF=AR,因此线段EF的长不变.【详解】如图,连接AR,∵E、F分别是AP、RP的中点,∴EF为△APR的中位线,∴EF=AR,为定值.∴线段EF的长不改变.故选:C.【点睛】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.7、D【解析】
根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.8、B【解析】一元二次方程的根的情况与根的判别式有关,,方程有两个不相等的实数根,故选B9、D【解析】
分别根据同底数幂的除法、乘法和幂的乘方的运算法则逐一计算即可得.【详解】解:A、a12÷a4=a8,此选项错误;
B、a4•a2=a6,此选项错误;
C、(-a2)3=-a6,此选项错误;
D、a•(a3)2=a•a6=a7,此选项正确;
故选D.【点睛】本题主要考查幂的运算,解题的关键是掌握同底数幂的除法、乘法和幂的乘方的运算法则.10、B【解析】
圆内接正六边形的边长是1,即圆的半径是1,则圆的内接正方形的对角线长是2,进而就可求解.【详解】解:∵圆内接正六边形的边长是1,∴圆的半径为1.那么直径为2.圆的内接正方形的对角线长为圆的直径,等于2.∴圆的内接正方形的边长是1.故选B.【点睛】本题考查正多边形与圆,关键是利用知识点:圆内接正六边形的边长和圆的半径相等;圆的内接正方形的对角线长为圆的直径解答.二、填空题(本大题共6个小题,每小题3分,共18分)11、k<且k≠1.【解析】根据一元二次方程kx2-x+1=1有两个不相等的实数根,知△=b2-4ac>1,然后据此列出关于k的方程,解方程,结合一元二次方程的定义即可求解:∵有两个不相等的实数根,∴△=1-4k>1,且k≠1,解得,k<且k≠1.12、﹣3(x﹣y)1【解析】解:﹣3x1+6xy﹣3y1=﹣3(x1+y1﹣1xy)=﹣3(x﹣y)1.故答案为:﹣3(x﹣y)1.点睛:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.13、-2<k<。【解析】
由图可知,∠AOB=45°,∴直线OA的解析式为y=x,联立,消掉y得,,由解得,.∴当时,抛物线与OA有一个交点,此交点的横坐标为1.∵点B的坐标为(2,0),∴OA=2,∴点A的坐标为().∴交点在线段AO上.当抛物线经过点B(2,0)时,,解得k=-2.∴要使抛物线与扇形OAB的边界总有两个公共点,实数k的取值范围是-2<k<.【详解】请在此输入详解!14、-1【解析】
根据二次函数的性质将x=2代入二次函数解析式中即可.【详解】f(x)=x2-3x+1f(2)=22-32+1=-1.故答案为-1.【点睛】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.15、4【解析】
连接把两部分的面积均可转化为规则图形的面积,不难发现两部分面积之差的绝对值即为的面积的2倍.【详解】解:连接OP、OB,∵图形BAP的面积=△AOB的面积+△BOP的面积+扇形OAP的面积,图形BCP的面积=△BOC的面积+扇形OCP的面积−△BOP的面积,又∵点P是半圆弧AC的中点,OA=OC,∴扇形OAP的面积=扇形OCP的面积,△AOB的面积=△BOC的面积,∴两部分面积之差的绝对值是点睛:考查扇形面积和三角形的面积,把不规则图形的面积转化为规则图形的面积是解题的关键.16、65°【解析】
解:由题意分析之,得出弧BD对应的圆周角是∠DAB,所以,=40°,由此则有:∠OCD=65°考点:本题考查了圆周角和圆心角的关系点评:此类试题属于难度一般的试题,考生在解答此类试题时一定要对圆心角、弧、弦等的基本性质要熟练把握三、解答题(共8题,共72分)17、(1);(2)第45天时,当天销售利润最大,最大利润是6050元;(3)41.【解析】
(1)根据单价乘以数量,可得利润,可得答案.(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案.(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【详解】(1)当1≤x<50时,,当50≤x≤90时,,综上所述:.(2)当1≤x<50时,二次函数开口下,二次函数对称轴为x=45,当x=45时,y最大=-2×452+180×45+2000=6050,当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元.(3)解,结合函数自变量取值范围解得,解,结合函数自变量取值范围解得所以当20≤x≤60时,即共41天,每天销售利润不低于4800元.【点睛】本题主要考查了1.二次函数和一次函数的应用(销售问题);2.由实际问题列函数关系式;3.二次函数和一次函数的性质;4.分类思想的应用.18、(1)50人;(2)补图见解析;(3).【解析】分析:(1)根据化学学科人数及其所占百分比可得总人数;(2)根据各学科人数之和等于总人数求得历史的人数即可;(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得.详解:(1)该班学生总数为10÷20%=50人;(2)历史学科的人数为50﹣(5+10+15+6+6)=8人,补全图形如下:(3)列表如下:化学生物政治历史地理化学生物、化学政治、化学历史、化学地理、化学生物化学、生物政治、生物历史、生物地理、生物政治化学、政治生物、政治历史、政治地理、政治历史化学、历史生物、历史政治、历史地理、历史地理化学、地理生物、地理政治、地理历史、地理由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,所以该同学恰好选中化学、历史两科的概率为.点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.19、不需要改道行驶【解析】
解:过点A作AH⊥CF交CF于点H,由图可知,∵∠ACH=75°-15°=60°,∴.∵AH>100米,∴消防车不需要改道行驶.过点A作AH⊥CF交CF于点H,应用三角函数求出AH的长,大于100米,不需要改道行驶,不大于100米,需要改道行驶.20、(1)见解析;(2)见解析,A2(6,4),B2(4,2),C2(5,1);(1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1,见解析.【解析】
(1)根据轴对称图形的性质,找出A、B、C的对称点A1、B1、C1,画出图形即可;(2)根据平移的性质,△ABC向右平移6个单位,A、B、C三点的横坐标加6,纵坐标不变;(1)根据轴对称图形的性质和顶点坐标,可得其对称轴是l:x=1.【详解】(1)由图知,A(0,4),B(﹣2,2),C(﹣1,1),∴点A、B、C关于y轴对称的对称点为A1(0,4)、B1(2,2)、C1(1,1),连接A1B1,A1C1,B1C1,得△A1B1C1;(2)∵△ABC向右平移6个单位,∴A、B、C三点的横坐标加6,纵坐标不变,作出△A2B2C2,A2(6,4),B2(4,2),C2(5,1);(1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1.【点睛】本题考查了轴对称图形的性质和作图﹣平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.21、【解析】分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,然后将除法改成乘法进行约分化简,最后将a的值代入化简后的式子得出答案.详解:原式=将原式=点睛:本题主要考查的是分式的化简求值,属于简单题型.解决这个问题的关键就是就是将括号里面的分式进行化成同分母.22、(1)见解析;(2).【解析】
(1)直接利用直角三角形的性质得出,再利用DE∥BC,得出∠2=∠3,进而得出答案;(2)利用已知得出在Rt△BCD中,∠3=60°,,得出DB的长,进而得出EC的长.【详解】(1)证明:∵AD⊥DB,点E为AB的中点,∴.∴∠1=∠2.∵DE∥BC,∴∠2=∠3.∴∠1=∠3.∴BD平分∠ABC.(2)解:∵AD⊥DB,∠A=30°,∴∠1=60°.∴∠3=∠2=60°.∵∠BCD=90°,∴∠4=30°.∴∠CDE=∠2+∠4=90°.在Rt△BCD中,∠3=60°,,∴DB=2.∵DE=BE,∠1=60°,∴DE=DB=2.∴.【点睛】此题主要考查了直角三角形斜边上的中线与斜边的关系,正确得出DB,DE的长是解题关键.23、(1)证明见解析;(2).【解析】
(1)连接OM,证明OM∥BE,再结合等腰三角形的性质说明AE⊥BE,进而证明OM⊥AE;(2)结合已知求出AB,再证明△AOM∽△ABE,利用相似三角形的性质计算.【详解】(1)连接OM,则OM=OB,∴∠1=∠2,∵BM平分∠ABC,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度跨国界软件许可协议
- 2024年度高端制造业硅酮胶采购合同
- 自愿解除竞业协议合同范本
- 北海市教育领域招聘笔试真题2023
- 二零二四年度东莞市技术咨询合同
- 湖南省岳阳市湘阴县长仑区2024-2025学年九年级上学期第一次月考语文试题(原卷版)
- 2024年度沥青路面分包合同:规范与要求
- 2024年度餐厅公共安全合同:消防安全与应急预案
- 2024年度保险合同:甲公司与乙保险公司签订企业财产保险
- 2024年度土木工程咨询合同
- 2024年云南省公务员录用考试《行测》真题及答案解析
- 2024-2030年中国粉末冶金制造行业“十四五”发展动态与发展方向建议报告
- 17 难忘的泼水节(第一课时)公开课一等奖创新教学设计
- 幼儿园办园行为督导评估指标体系表
- (高清版)DB43∕T 2628-2023 埋地排水用UHMW一P∕TE方型增强排水管技术规范
- 2024-2030年中国吡蚜酮行业现状发展分析及投资潜力研究报告
- 商业建筑光伏发电系统施工方案
- 广东省深圳市2023-2024学年高一上学期语文期末考试试卷(含答案)
- 一年级数学20以内加减法口算混合练习题
- 河北省保定市定州市2024-2025学年九年级上学期期中考试化学试卷
- 【工程法规】王欣 冲刺串讲班课件 11-第5章-知识点1-合同的订立-知识点2-合同的效力
评论
0/150
提交评论