![山西省长治市清华机械厂中学2021-2022学年高二数学文上学期期末试卷含解析_第1页](http://file4.renrendoc.com/view/1c41d3d3661059ef9bdc2d55addd87e2/1c41d3d3661059ef9bdc2d55addd87e21.gif)
![山西省长治市清华机械厂中学2021-2022学年高二数学文上学期期末试卷含解析_第2页](http://file4.renrendoc.com/view/1c41d3d3661059ef9bdc2d55addd87e2/1c41d3d3661059ef9bdc2d55addd87e22.gif)
![山西省长治市清华机械厂中学2021-2022学年高二数学文上学期期末试卷含解析_第3页](http://file4.renrendoc.com/view/1c41d3d3661059ef9bdc2d55addd87e2/1c41d3d3661059ef9bdc2d55addd87e23.gif)
![山西省长治市清华机械厂中学2021-2022学年高二数学文上学期期末试卷含解析_第4页](http://file4.renrendoc.com/view/1c41d3d3661059ef9bdc2d55addd87e2/1c41d3d3661059ef9bdc2d55addd87e24.gif)
![山西省长治市清华机械厂中学2021-2022学年高二数学文上学期期末试卷含解析_第5页](http://file4.renrendoc.com/view/1c41d3d3661059ef9bdc2d55addd87e2/1c41d3d3661059ef9bdc2d55addd87e25.gif)
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省长治市清华机械厂中学2021-2022学年高二数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在正四面体P-ABC中,D、E、F分别是AB、BC、CA的中点,下面四个结论中不正确的是(
)A.BC//平面PDF
B.
DF⊥平面PAEC.平面PDF⊥平面ABC
D.
平面PAE⊥平面ABC参考答案:C略2.下列命中,正确的是()A.||=||=
B.||>||>C.=∥
D.||=0=0参考答案:C3.某流程图如图所示,现输入如下四个函数,则可以输出的函数是
()A.
B.C.D.参考答案:C略4.我们学过平面向量(二维向量)),空间向量(三位向量),二维、三维向量的坐标表示及其运算可以推广到n(n≥3)维向量。n维向量可用(,,,,…,)表示.设
(,,,,…,),设
(,,,,…,),a与b夹角的余弦值为.当两个n维向量,(1,1,1,…,1),
(-1,-1,1,1,…,1)时,
(
)A.
B.
C.
D.
参考答案:D略5.若三角形三边上的高为,这三边长分别为6、4、3,则(
)A.
B.
C.
D.参考答案:C6.已知命题p:x1,x2R,(f(x2)f(x1)(x2x1)≥0,则p是(
)A.x1,x2R,(f(x2)f(x1)(x2x1)≤0B.x1,x2R,(f(x2)f(x1)(x2x1)≤0C.x1,x2R,(f(x2)f(x1)(x2x1)<0
D.x1,x2R,(f(x2)f(x1)(x2x1)<0参考答案:C略7.已知圆,定点,点P为圆M上的动点,点Q在NP上,,()A. B.C. D.参考答案:A【考点】椭圆的简单性质.【专题】计算题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】由已知得Q为PN的中点且GQ⊥PN,|GN|+|GM|=|MP|=8,从而得到G点的轨迹是以M、N为焦点的椭圆,其长半轴长a=4,半焦距c=,由此能求出点G的轨迹方程.【解答】解:∵圆,定点,点P为圆M上的动点,∴M(﹣,0),PM=8,∵点Q在NP上,,=0,∴Q为PN的中点且GQ⊥PN,∴GQ为PN的中垂线,∴|PG|=|GN|,∴|GN|+|GM|=|MP|=8,故G点的轨迹是以M、N为焦点的椭圆,其长半轴长a=4,半焦距c=,∴短半轴长b==3,∴点G的轨迹方程是=1.故选:A.【点评】本题考查点的轨迹方程的求法,是中档题,解题时要认真审题,注意椭圆定义和性质的合理运用.8.数列1,2,4,8,16,32,…的一个通项公式是(
)A.an=2n﹣1 B.an=2n﹣1 C.an=2n D.an=2n+1参考答案:B【考点】等比数列的通项公式.【专题】计算题.【分析】观察此数列是首项是1,且是公比为2的等比数列,根据等比数列的通项公式求出此数列的一个通项公式.【解答】解:由于数列1,2,4,8,16,32,…的第一项是1,且是公比为2的等比数列,故通项公式是an=1×qn﹣1=2n﹣1,故此数列的一个通项公式an=2n﹣1,故选B.【点评】本题主要考查求等比数列的通项公式,求出公比q=2是解题的关键,属于基础题.9.设平面向量a=(1,2),b=(-2,y),若a∥b,则|3a+b|等于()A.
B.C.
D.参考答案:A10.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.曲线,所围成的封闭图形的面积为
.参考答案:试题分析:曲线,的交点为,所求封闭图形面积为.考点:曲边梯形面积.12.将数列按“第n组有n个数”的规则分组如下:,,,…,则第100组中的第一个数是______.参考答案:试题分析:前9组中共有个数,因此第9组中的最后一个数是是,所以第10组中的第一个数是.考点:数列.13.的最小值为________.参考答案:3略14.在各项均为正数的等比数列{an}中,若2a4+a3﹣2a2﹣a1=8,则2a5+a4的最小值为.参考答案:12【考点】等比数列的通项公式.【分析】2a4+a3﹣2a2﹣a1=8,公比q>0,a1>0.可得:a1=>0,可得q>1.则2a5+a4===,设=x∈(0,1),则y=x﹣x3,利用导数研究其单调性极值与最值即可得出.【解答】解:∵2a4+a3﹣2a2﹣a1=8,公比q>0,a1>0.∴a1(2q3+q2﹣2q﹣1)=8,∴a1=>0,可得q>1.则2a5+a4===,设=x∈(0,1),则y=x﹣x3,由y′=1﹣3x2=0,解得x=.可得x=时,y取得最大值,ymax=.∴2a5+a4的最大值为=12.故答案为:12.15.若在展开式中x3的系数为-80,则a=
.参考答案:-2;16.双曲线的离心率为,则m等于_____________.参考答案:9略17.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第n个图案中有白色地面砖
块参考答案:4n+2【考点】F1:归纳推理.【分析】通过已知的几个图案找出规律,可转化为求一个等差数列的通项公式问题即可.【解答】解:第1个图案中有白色地面砖6块;第2个图案中有白色地面砖10块;第3个图案中有白色地面砖14块;…设第n个图案中有白色地面砖n块,用数列{an}表示,则a1=6,a2=10,a3=14,可知a2﹣a1=a3﹣a2=4,…可知数列{an}是以6为首项,4为公差的等差数列,∴an=6+4(n﹣1)=4n+2.故答案为4n+2.【点评】由已知的几个图案找出规律转化为求一个等差数列的通项公式是解题的关键.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=ax3+bx2﹣3x(a,b∈R),曲线y=f(x)在点(1,f(1))处的切线方程为y=-2.(1)求函数f(x)的解析式;(2)若对于[-2,2]上任意x1,x2都有|f(x1)﹣f(x2)|≤c,求实数c的最小值;(3)若过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,求实数m的取值范围.参考答案:(1)由题意,利用导函数的几何含义及切点的实质建立a,b的方程,然后求解即可;(2)由题意,对于定义域内任意自变量都使得|f(x1)﹣f(x2)|≤c,可以转化为求函数在定义域下的最值即可得解;(3)由题意,若过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,等价与函数在切点处导函数值等于切线的斜率这一方程有3解.解:(1)f'(x)=3ax2+2bx﹣3.根据题意,得即解得所以f(x)=x3﹣3x.(2)令f'(x)=0,即3x2﹣3=0.得x=±1.列表如下:所以当x∈[﹣2,2]时,f(x)max=2,f(x)min=﹣2.因此对于[﹣2,2]上的任意x1,x2,都有|f(x1)﹣f(x2)|≤|f(x)max﹣f(x)min|=4,所以c≥4.所以c的最小值为4.(3)因为点M(2,m)(m≠2)不在曲线y=f(x)上,所以可设切点为(x0,y0).则y0=x03﹣3x0.因为f'(x0)=3x02﹣3,所以切线的斜率为3x02﹣3.则3x02﹣3=,即2x03﹣6x02+6+m=0.因为过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,所以方程2x03﹣6x02+6+m=0有三个不同的实数解.所以函数g(x)=2x3﹣6x2+6+m有三个不同的零点.则g'(x)=6x2﹣12x.令g'(x)=0,则x=0或x=2.当x∈(﹣∞,0)时,g′(x)>0,函数g(x)在此区间单调递增;当x∈(0,2)时,g′(x)<0,函数g(x)在此区间单调递减;所以,函数g(x)在x=0处取极大值,在x=2处取极小值,有方程与函数的关系知要满足题意必须满足:,即,解得﹣6<m<2.19.(本小题满分12分)设集合A中不含有元素,且满足条件:若,则有,请考虑以下问题:(1)已知,求出A中其它所有元素;(2)自己设计一个实数属于A,再求出A中其它所有元素;(3)根据已知条件和前面(1)(2)你能悟出什么道理来,并证明你的猜想.参考答案:解:(1)由,则,所以集合;(2)任取一常数,如3,则同理(Ⅰ)可得:;(3)猜想任意的,则集合.下面作简要证明:,则.这四个元素互不相等,否则.20.为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.(1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.参考答案:解:(1)总体平均数为(5+6+7+8+9+10)=7.5.·········4分
(2)设A表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”.从总体中抽取2个个体全部可能的基本结果有:(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10),共15个基本结果.
7分事件A包括的基本结果有:(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),共有7个基本结果.·································10分所以所求的概率为P(A)=.························12分
21.如图,O为坐标原点,过点P(2,0)且斜率为k的直线l交抛物线y2=2x于M(x1,y1),N(x2,y2)两点.(1)若k=1,求|MN|;(2)求证:OM⊥ON.参考答案:【考点】抛物线的简单性质.【分析】(1)由题意可知:直线方程为:y=x﹣2,代入抛物线方程,由韦达定理可知:x1+x2=6,x1x2=4,则弦长公式可知|MN|=?,即可求得|MN|;(2)设直线方程方程,y=k(x﹣2)(k≠0),代入抛物线方程,即可求得x1x2=4,则(y1y2)2=4x1x2,则求得y1y2,则由斜率公式可知:k1?k2=?=﹣1,即可证明OM⊥ON.【解答】解:(1)由题意可知:直线方程为:y=x﹣2,则,整理得:x2﹣6x+4=0,由韦达定理可知:x1+x2=6,x1x2=4,∴|MN|=?=?=2,∴|MN|=2;(2)证明:直线l过点P(2,0)且斜率为k,设直线l的方程为y=k(x﹣2)(k≠0)∴,消去y代入可得k2x2﹣2(k2+1)x+4k2=0.由韦达定理可知:x1x2==4,由y12=2x1,y22=2x2,则(y1y2)2=4x1x2=4×4=16,又注意到y1y2<0,所以y1y2=﹣4.设OM,ON的斜率分别为k1,k2,则k1=,k2=,k1?k2=?===﹣1,∴OM⊥ON.22.(本题满分16分)在淘宝网上,某店铺专卖盐城某种特产.由以往的经验表明,不考虑其他因素,该特产每日的销售量(单位:千克)与销售价格(单位:元/千克,)满足:当时,,;当时,.已知当销售价格为元/千克时,每日可售出该特产600千克;当销售价格为元/千克时,每日可售出150千克.(1)求的值,并确定关于的函数解析式;(2)若该特产的销售成本为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年产品代理合同协议(4篇)
- 2025年中心小学新教育实验工作总结(3篇)
- 2025年中学学年度校务公开工作总结模版(2篇)
- 学校电路更换合同范例
- 外墙改造装饰工程合同范例
- 去日本务工合同范例
- 商业汇票转让合同范例
- 动线设计合同范例
- epco模式合同范例
- 场馆转租合同范例
- 2025年第六届全国国家版图知识竞赛测试题库及答案
- 2025年度文化演艺代理合作协议书4篇
- 输变电工程监督检查标准化清单-质监站检查
- 2024-2025学年北京海淀区高二(上)期末生物试卷(含答案)
- 领导学 课件全套 孙健 第1-9章 领导要素- 领导力开发
- 【超星学习通】马克思主义基本原理(南开大学)尔雅章节测试网课答案
- 闭袢性小肠梗阻诊断与治疗中国急诊专家共识(2024版)解读
- 公共组织学(第三版)课件:公共组织结构
- 2024年山东省济宁市中考化学试卷(附答案)
- 人教版八年级上册地理2024-2025学年八年级上册地理第一章 从世界看中国 测试卷(一)(含答案)
- 《煤矿安全培训知识》课件
评论
0/150
提交评论