2023届贵州省毕节织金县中考押题数学预测卷含解析_第1页
2023届贵州省毕节织金县中考押题数学预测卷含解析_第2页
2023届贵州省毕节织金县中考押题数学预测卷含解析_第3页
2023届贵州省毕节织金县中考押题数学预测卷含解析_第4页
2023届贵州省毕节织金县中考押题数学预测卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在边长为3的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为()A.33 B.32 C.2.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度与时间之间的关系的图象是()A. B. C. D.3.平面直角坐标系内一点关于原点对称点的坐标是()A. B. C. D.4.下列天气预报中的图标,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.5.如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()A.1 B.2 C.3 D.46.下列各式计算正确的是()A.a4•a3=a12 B.3a•4a=12a C.(a3)4=a12 D.a12÷a3=a47.如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tan∠ACB·tan∠ABC=()A.2 B.3 C.4 D.58.甲、乙、丙、丁四名射击运动员进行淘汰赛,在相同条件下,每人射击10次,甲、乙两人的成绩如图所示,丙、丁二人的成绩如表所示.欲淘汰一名运动员,从平均数和方差两个因素分析,应淘汰()丙丁平均数88方差1.21.8A.甲 B.乙 C.丙 D.丁9.如图所示的几何体的俯视图是(

)A. B. C. D.10.化简(﹣a2)•a5所得的结果是()A.a7 B.﹣a7 C.a10 D.﹣a10二、填空题(共7小题,每小题3分,满分21分)11.如图,在平面直角坐标系中,⊙P的圆心在x轴上,且经过点A(m,﹣3)和点B(﹣1,n),点C是第一象限圆上的任意一点,且∠ACB=45°,则⊙P的圆心的坐标是_____.12.分解因式:a3-12a2+36a=______.13.ABCD为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2cm/s的速度向D移动,P、Q两点从出发开始到__________秒时,点P和点Q的距离是10cm.14.分解因式:mx2﹣4m=_____.15.已知线段AB=10cm,C为线段AB的黄金分割点(AC>BC),则BC=_____.16.圆锥的底面半径是4cm,母线长是5cm,则圆锥的侧面积等于_____cm1.17.若x=-1,则x2+2x+1=__________.三、解答题(共7小题,满分69分)18.(10分)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,8),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.19.(5分)计算:(1)(2)20.(8分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?21.(10分)小强的妈妈想在自家的院子里用竹篱笆围一个面积为4平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝).小强根据他学习函数的经验做了如下的探究.下面是小强的探究过程,请补充完整:建立函数模型:设矩形小花园的一边长为x米,篱笆长为y米.则y关于x的函数表达式为________;列表(相关数据保留一位小数):根据函数的表达式,得到了x与y的几组值,如下表:x0.511.522.533.544.55y17108.38.28.79.310.811.6描点、画函数图象:如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;观察分析、得出结论:根据以上信息可得,当x=________时,y有最小值.由此,小强确定篱笆长至少为________米.22.(10分)某市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品4件,乙种纪念品3件,需要550元,若购进甲种纪念品5件,乙种纪念品6件,需要800元.(1)求购进甲、乙两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共80件,其中甲种纪念品的数量不少于60件.考虑到资金周转,用于购买这80件纪念品的资金不能超过7100元,那么该商店共有几种进货方案7(3)若销售每件甲种纪含晶可获利润20元,每件乙种纪念品可获利润30元.在(2)中的各种进货方案中,若全部销售完,哪一种方案获利最大?最大利利润多少元?23.(12分)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.求证:CG是⊙O的切线.求证:AF=CF.若sinG=0.6,CF=4,求GA的长.24.(14分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.(1)求证:△ADB≌△AEC;(2)若AD=2,BD=3,请计算线段CD的长;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.(3)证明:△CEF是等边三角形;(4)若AE=4,CE=1,求BF的长.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】试题分析:∵△ABC为等边三角形,BP平分∠ABC,∴∠PBC=12∠ABC=30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,PC=BC•tan∠PBC=3考点:1.角平分线的性质;2.等边三角形的性质;3.含30度角的直角三角形;4.勾股定理.2、C【解析】

首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。故选:C.【点睛】此题考查函数的图象,解题关键在于观察图形3、D【解析】

根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】解:根据关于原点对称的点的坐标的特点,∴点A(-2,3)关于原点对称的点的坐标是(2,-3),故选D.【点睛】本题主要考查点关于原点对称的特征,解决本题的关键是要熟练掌握点关于原点对称的特征.4、A【解析】

根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,也是中心对称图形,符合题意;B、是轴对称图形,不是中心对称图形,不合题意;C、不是轴对称图形,也不是中心对称图形,不合题意;D、不是轴对称图形,不是中心对称图形,不合题意.故选:A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、C【解析】

本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、矩形OABC的面积与|k|的关系,列出等式求出k值.【详解】由题意得:E、M、D位于反比例函数图象上,则,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|.又∵M为矩形ABCO对角线的交点,∴S矩形ABCO=4S□ONMG=4|k|,∵函数图象在第一象限,k>0,∴.解得:k=1.故选C.【点睛】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.6、C【解析】

根据同底数幂的乘法,可判断A、B,根据幂的乘方,可判断C,根据同底数幂的除法,可判断D.【详解】A.a4•a3=a7,故A错误;B.3a•4a=12a2,故B错误;C.(a3)4=a12,故C正确;D.a12÷a3=a9,故D错误.故选C.【点睛】本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减是解题的关键.7、C【解析】

如图(见解析),连接BD、CD,根据圆周角定理可得,再根据相似三角形的判定定理可得,然后由相似三角形的性质可得,同理可得;又根据圆周角定理可得,再根据正切的定义可得,然后求两个正切值之积即可得出答案.【详解】如图,连接BD、CD在和中,同理可得:,即为⊙O的直径故选:C.【点睛】本题考查了圆周角定理、相似三角形的判定定理与性质、正切函数值等知识点,通过作辅助线,结合圆周角定理得出相似三角形是解题关键.8、D【解析】

求出甲、乙的平均数、方差,再结合方差的意义即可判断.【详解】=(6+10+8+9+8+7+8+9+7+7)=8,=[(6-8)2+(10-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2+(8-8)2+(9-8)2+(7-8)2+(7-8)2]=×13=1.3;=(7+10+7+7+9+8+7+9+9+7)=8,=[(7-8)2+(10-8)2+(7-8)2+(7-8)2+(9-8)2+(8-8)2+(7-8)2+(9-8)2+(9-8)2+(7-8)2]=×12=1.2;丙的平均数为8,方差为1.2,丁的平均数为8,方差为1.8,故4个人的平均数相同,方差丁最大.故应该淘汰丁.故选D.【点睛】本题考查方差、平均数、折线图等知识,解题的关键是记住平均数、方差的公式.9、B【解析】

根据俯视图是从上往下看得到的图形解答即可.【详解】从上往下看得到的图形是:故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线10、B【解析】分析:根据同底数幂的乘法计算即可,计算时注意确定符号.详解:(-a2)·a5=-a7.故选B.点睛:本题考查了同底数幂的乘法,熟练掌握同底数的幂相乘,底数不变,指数相加是解答本题的关键.二、填空题(共7小题,每小题3分,满分21分)11、(2,0)【解析】【分析】作辅助线,构建三角形全等,先根据同弧所对的圆心角是圆周角的二倍得:∠APB=90°,再证明△BPE≌△PAF,根据PE=AF=3,列式可得结论.【详解】连接PB、PA,过B作BE⊥x轴于E,过A作AF⊥x轴于F,∵A(m,﹣3)和点B(﹣1,n),∴OE=1,AF=3,∵∠ACB=45°,∴∠APB=90°,∴∠BPE+∠APF=90°,∵∠BPE+∠EBP=90°,∴∠APF=∠EBP,∵∠BEP=∠AFP=90°,PA=PB,∴△BPE≌△PAF,∴PE=AF=3,设P(a,0),∴a+1=3,a=2,∴P(2,0),故答案为(2,0).【点睛】本题考查了圆周角定理和坐标与图形性质,三角形全等的性质和判定,作辅助线构建三角形全等是关键.12、a(a-6)2【解析】

原式提取a,再利用完全平方公式分解即可.【详解】原式=a(a2-12a+36)=a(a-6)2,故答案为a(a-6)2【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.13、或【解析】

作PH⊥CD,垂足为H,设运动时间为t秒,用t表示线段长,用勾股定理列方程求解.【详解】设P,Q两点从出发经过t秒时,点P,Q间的距离是10cm,作PH⊥CD,垂足为H,则PH=AD=6,PQ=10,∵DH=PA=3t,CQ=2t,∴HQ=CD−DH−CQ=|16−5t|,由勾股定理,得解得即P,Q两点从出发经过1.6或4.8秒时,点P,Q间的距离是10cm.故答案为或.【点睛】考查矩形的性质,勾股定理,解一元二次方程等,表示出HQ=CD−DH−CQ=|16−5t|是解题的关键.14、m(x+2)(x﹣2)【解析】

提取公因式法和公式法相结合因式分解即可.【详解】原式故答案为【点睛】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.15、(15-55).【解析】试题解析:∵C为线段AB的黄金分割点(AC>BC),∴AC=5-12AB=AC=5-1∴BC=AB-AC=10-(55-5)=(15-55)cm.考点:黄金分割.16、10π【解析】

解:根据圆锥的侧面积公式可得这个圆锥的侧面积=•1π•4•5=10π(cm1).故答案为:10π【点睛】本题考查圆锥的计算.17、2【解析】

先利用完全平方公式对所求式子进行变形,然后代入x的值进行计算即可.【详解】∵x=-1,∴x2+2x+1=(x+1)2=(-1+1)2=2,故答案为:2.【点睛】本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键.三、解答题(共7小题,满分69分)18、(1),y=2x﹣1;(2).【解析】

(1)利用待定系数法即可解答;

(2)作MD⊥y轴,交y轴于点D,设点M的坐标为(x,2x-1),根据MB=MC,得到CD=BD,再列方程可求得x的值,得到点M的坐标【详解】解:(1)把点A(4,3)代入函数得:a=3×4=12,∴.∵A(4,3)∴OA=1,∵OA=OB,∴OB=1,∴点B的坐标为(0,﹣1)把B(0,﹣1),A(4,3)代入y=kx+b得:∴y=2x﹣1.(2)作MD⊥y轴于点D.∵点M在一次函数y=2x﹣1上,∴设点M的坐标为(x,2x﹣1)则点D(0,2x-1)∵MB=MC,∴CD=BD∴8-(2x-1)=2x-1+1解得:x=∴2x﹣1=,∴点M的坐标为.【点睛】本题考查了一次函数与反比例函数的交点,解决本题的关键是利用待定系数法求解析式.19、(1);(2)1.【解析】

(1)根据二次根式的混合运算法则即可;(2)根据特殊角的三角函数值即可计算.【详解】解:(1)原式=;(2)原式.【点睛】本题考查了二次根式运算以及特殊角的三角函数值的运算,解题的关键是熟练掌握运算法则.20、10,1.【解析】试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程求出边长的值.试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得化简,得,解得:当时,(舍去),当时,,答:所围矩形猪舍的长为10m、宽为1m.考点:一元二次方程的应用题.21、见解析【解析】

根据题意:一边为x米,面积为4,则另一边为米,篱笆长为y=2(x)=2x,由x═()2+4可得当x=2,y有最小值,则可求篱笆长.【详解】根据题意:一边为x米,面积为4,则另一边为米,篱笆长为y=2(x)=2x∵x()2+()2=()2+4,∴x4,∴2x1,∴当x=2时,y有最小值为1,由此小强确定篱笆长至少为1米.故答案为:y=2x,2,1.【点睛】本题考查了反比例函数的应用,完全平方公式的运用,关键是熟练运用完全平方公式.22、(1)购进甲种纪念品每件需100元,购进乙种纪念品每件需50元.(2)有三种进货方案.方案一:甲种纪念品60件,乙种纪念品20件;方案二:甲种纪念品61件,乙种纪念品19件;方案三:甲种纪念品1件,乙种纪念品18件.(3)若全部销售完,方案一获利最大,最大利润是1800元.【解析】分析:(1)设购进甲种纪念品每件价格为x元,乙种纪念币每件价格为y元,根据题意得出关于x和y的二元一次方程组,解方程组即可得出结论;(2)设购进甲种纪念品a件,根据题意列出关于x的一元一次不等式,解不等式得出a的取值范围,即可得出结论;(3)找出总利润关于购买甲种纪念品a件的函数关系式,由函数的增减性确定总利润取最值时a的值,从而得出结论.详解:(1)设购进甲种纪念品每件需x元,购进乙种纪念品每件需y元.由题意得:,解得:答:购进甲种纪念品每件需100元,购进乙种纪念品每件需50元.(2)设购进甲种纪念品a(a≥60)件,则购进乙种纪念品(80﹣a)件.由题意得:100a+50(80﹣a)≤7100解得a≤1又a≥60所以a可取60、61、1.即有三种进货方案.方案一:甲种纪念品60件,乙种纪念品20件;方案二:甲种纪念品61件,乙种纪念品19件;方案三:甲种纪念品1件,乙种纪念品18件.(3)设利润为W,则W=20a+30(80﹣a)=﹣10a+2400所以W是a的一次函数,﹣10<0,W随a的增大而减小.所以当a最小时,W最大.此时W=﹣10×60+2400=1800答:若全部销售完,方案一获利最大,最大利润是1800元.点睛:本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,找到相应的数量关系是解决问题的关键,注意第二问应求整数解,要求学生能够运用所学知识解决实际问题.23、(1)见解析;(2)见解析;(3)AG=1.【解析】

(1)利用垂径定理、平行的性质,得出OC⊥CG,得证CG是⊙O的切线.(2)利用直径所对圆周角为和垂直的条件得出∠2=∠B,再根据等弧所对的圆周角相等得出∠1=∠B,进而证得∠1=∠2,得证AF=CF.(3)根据直角三角形的性质,求出AD的长度,再利用平行的性质计算出结果.【详解】(1)证明:连结OC,如图,∵C是劣弧AE的中点,∴OC⊥AE,∵CG∥AE,∴CG⊥OC,∴CG是⊙O的切线;(2)证明:连结AC、BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠2+∠BCD=90°,而CD⊥AB,∴∠B+∠BCD=90°,∴∠B=∠2,∵C是劣弧AE的中点,∴,∴∠1=∠B,∴∠1=∠2,∴AF=CF;(3)解:∵CG∥AE,∴∠FAD=∠G,∵sinG=0.6,∴sin∠FAD==0.6,∵∠CDA=90°,AF=CF=4,∴DF=2.4,∴AD=3.2,∴CD=CF+DF=6.4,∵AF∥CG,∴,∴∴DG=,∴AG=DG﹣AD=1.【点睛】本题主要考查与圆有关的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论